精英家教網 > 高中數學 > 題目詳情

【題目】設數列{an},a1=1,an+1= + ,數列{bn},bn=2n1an
(1)求證:數列{bn}為等差數列,并求出{bn}的通項公式;
(2)數列{an}的前n項和為Sn , 求Sn;
(3)正數數列{dn}滿足 = .設數列{dn}的前n項和為Dn , 求不超過D100的最大整數的值.

【答案】
(1)證明:由 ,得

,

所以bn+1=bn+1,

又b1=a1=1,

所以數列{bn}是以1為首項,1為公差的等差數列.bn=n


(2)解:∵

所以 ①,

,②

由①﹣②,

所以


(3)解:

,

所以 ,

所以,不超過D100的最大整數為100


【解析】(1)由等差數列的定義和數列的遞推公式即可證明,(2)根據錯位相減法即可求出數列{an}的前n項和為Sn , (3)利用裂項求和,即可求出不超過D100的最大整數的值.
【考點精析】根據題目的已知條件,利用等差數列的通項公式(及其變式)和數列的前n項和的相關知識可以得到問題的答案,需要掌握通項公式:;數列{an}的前n項和sn與通項an的關系

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知△ABC的頂點A(5,1),AB邊上的中線CM所在直線方程為2x﹣y﹣5=0,AC邊上的高BH所在直線方程為x﹣2y﹣5=0.求:
(1)頂點C的坐標;
(2)直線BC的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】△ABC的內角A,B,C所對的邊分別為a,b,c.且 =(cos(A﹣B),﹣sin(A﹣B)), =(cosB,sinB),若 =﹣ . (Ⅰ)求sin A的值;
(Ⅱ)若a=4 ,b=5,求向量 方向上的投影.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】隨著手機的發(fā)展,“微信”越來越成為人們交流的一種方式.某機構對“使用微信交流”的態(tài)度進行調查,隨機抽取了50人,他們年齡的頻數分布及對“使用微信交流”贊成人數如下表.

年齡(單位:歲)

[15,25)

[25,35)

[35,45)

[45,55)

[55,65)

[65,75)

頻數

5

10

15

10

5

5

贊成人數

5

10

12

7

2

1

(Ⅰ)若以“年齡45歲為分界點”,由以上統(tǒng)計數據完成下面列聯(lián)表,并判斷是否有99%的把握認為“使用微信交流”的態(tài)度與人的年齡有關;

年齡不低于45歲的人數

年齡低于45歲的人數

合計

贊成

不贊成

合計

(Ⅱ)若從年齡在[25,35)和[55,65)的被調查人中按照分層抽樣的方法選取6人進行追蹤調查,并給予其中3人“紅包”獎勵,求3人中至少有1人年齡在[55,65)的概率.

參考數據如下:

附臨界值表:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

的觀測值: (其中

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列的前項和為,且,又數列滿足: .

(1)求數列的通項公式

(2)為何值時,數列是等比數列?此時數列的前項和為,若存在,使m<成立,求的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中, 平面 , , 為線段上的點,

(1)證明: 平面

(2)若的中點,求與平面所成的角的正切值;

(3)若滿足,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】過原點O的圓C,與x軸相交于點A(4,0),與y軸相交于點B(0,2).

(1)求圓C的標準方程;

(2)直線lB點與圓C相切,求直線l的方程,并化為一般式.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】元旦期間,某轎車銷售商為了促銷,給出了兩種優(yōu)惠方案,顧客只能選擇其中的一種,方案一:每滿萬元,可減千元;方案二:金額超過萬元(含萬元),可搖號三次,其規(guī)則是依次裝有個幸運號、個吉祥號的一個搖號機,裝有個幸運號、個吉祥號的二號搖號機,裝有個幸運號、個吉祥號的三號搖號機各搖號一次,其優(yōu)惠情況為:若搖出個幸運號則打折,若搖出個幸運號則打折;若搖出個幸運號則打折;若沒有搖出幸運號則不打折.

(1)若某型號的車正好萬元,兩個顧客都選中第二中方案,求至少有一名顧客比選擇方案一更優(yōu)惠的概率;

(2)若你評優(yōu)看中一款價格為萬的便型轎車,請用所學知識幫助你朋友分析一下應選擇哪種付款方案.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知等比數列{an}滿足a1=2,a2=4(a3﹣a4),數列{bn}滿足bn=3﹣2log2an
(1)求數列{an}和{bn}的通項公式;
(2)令cn= ,求數列{cn}的前n項和Tn
(3)若λ>0,求對所有的正整數n都有2λ2﹣kλ+2>a2nbn成立的k的范圍.

查看答案和解析>>

同步練習冊答案