【題目】下列結(jié)論正確的是( )
A. 空間中不同三點確定一個平面
B. 空間中兩兩相交的三條直線確定一個平面
C. 一條直線和一個點能確定一個平面
D. 梯形一定是平面圖形
科目:高中數(shù)學(xué) 來源: 題型:
【題目】把黑、紅、白3張紙牌分給甲、乙、丙三人,則事件“甲分得紅牌”與“乙分得紅牌”是( )
A. 對立事件 B. 互斥但不對立事件
C. 不可能事件 D. 必然事件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為了了解全校學(xué)生的上網(wǎng)情況,在全校采用隨機(jī)抽樣的方法抽取了40名學(xué)生(其中男女生人數(shù)恰好各占一半)進(jìn)行問卷調(diào)查,并進(jìn)行了統(tǒng)計,按男女分為兩組,再將每組學(xué)生的月上網(wǎng)次數(shù)分為5組:,得到如圖所示的頻率分布直方圖:
(I)寫出的值;
(II)在抽取的40名學(xué)生中,從月上網(wǎng)次數(shù)不少于20次的學(xué)生中隨機(jī)抽取3人,并用表示其中男生的人數(shù),求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,為坐標(biāo)原點,動點在圓外,過點作圓的切線,設(shè)切點為.
(1)若點運動到處,求此時切線的方程;
(2)求滿足的點的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若a=log0.50.2,b=log20.2,c=20.2,則a,b,c的大小關(guān)系是( )
A. a<b<c B. b<c<a C. b<a<c D. c<b<a
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)為打入國際市場,決定從、兩種產(chǎn)品中只選擇一種進(jìn)行投資生產(chǎn),已知投資生產(chǎn)這兩種產(chǎn)品的有關(guān)數(shù)據(jù)如下表:(單位:萬美元)
年固定成本 | 每件產(chǎn)品成本 | 每件產(chǎn)品銷售價 | 每年最多可生產(chǎn)的件數(shù) | |
A產(chǎn)品 | 20 | 10 | 200 | |
B產(chǎn)品 | 40 | 8 | 18 | 120 |
其中年固定成本與年生產(chǎn)的件數(shù)無關(guān),是待定常數(shù),其值由生產(chǎn)產(chǎn)品的原材料決定,預(yù)計,另外,年銷售件B產(chǎn)品時需上交萬美元的特別關(guān)稅,假設(shè)生產(chǎn)出來的產(chǎn)品都能在當(dāng)年銷售出去.
(1)求該廠分別投資生產(chǎn)A、兩種產(chǎn)品的年利潤與生產(chǎn)相應(yīng)產(chǎn)品的件數(shù)之間的函數(shù)關(guān)系,并求出其定義域;
(2)如何投資才可獲得最大年利潤?請設(shè)計相關(guān)方案.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某細(xì)胞分裂時,由1個分裂成2個,2個分裂成4個,…,這樣細(xì)胞分裂x次后,得到細(xì)胞總數(shù)y與x的函數(shù)關(guān)系是( )
A. y=2x+1-1(x∈N*) B. y=2x(x∈N*)
C. y=2x-1(x∈N*) D. y=2x+1(x∈N*)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校做了一次關(guān)于“感恩父母”的問卷調(diào)查,從8~10歲,11~12歲,13~14歲,15~16歲四個年齡段回收的問卷依次為:120份,180份,240份,x份.因調(diào)查需要,從回收的問卷中按年齡段分層抽取容量為300的樣本,其中在11~12歲學(xué)生問卷中抽取60份,則在15~16歲學(xué)生中抽取的問卷份數(shù)為( )
A.60 B.80 C.120 D.180
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于樣本頻率分布折線圖與總體密度曲線的關(guān)系,下列說法中正確的是( )
A. 頻率分布折線圖與總體密度曲線無關(guān)
B. 頻率分布折線圖就是總體密度曲線
C. 樣本容量很大的頻率分布折線圖就是總體密度曲線
D. 如果樣本容量無限增大、分組的組距無限減小,那么頻率分布折線圖就會無限接近總體密度曲線
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com