清明節(jié)小長(zhǎng)假期間,某公園推出擲飛鏢和摸球兩種游戲,甲參加擲飛鏢游戲,已知甲投擲中紅色靶區(qū)的概率為
1
2
,投中藍(lán)色靶區(qū)的概率為
1
4
,不能中靶概率為
1
4
;該游戲規(guī)定,投中紅色靶區(qū)記2分,投中藍(lán)色靶區(qū)記1分,未投中標(biāo)靶記0分;乙參加摸球游戲,該游戲規(guī)定,在一個(gè)盒中裝有大小相同的10個(gè)球,其中6個(gè)紅球和4個(gè)黃球,從中一次摸出3個(gè)球,一個(gè)紅球記1分,黃球不記分.
(Ⅰ)求乙恰得1分的概率;
(Ⅱ)求甲在4次投擲飛鏢中恰有三次投中紅色靶區(qū)的概率;
(Ⅲ)求甲兩次投擲后得分ξ的分布列及數(shù)學(xué)期望.
考點(diǎn):離散型隨機(jī)變量的期望與方差,古典概型及其概率計(jì)算公式
專題:概率與統(tǒng)計(jì)
分析:(Ⅰ)利用古典概型概率計(jì)算公式能求出乙恰得1分的概率.
(Ⅱ)每次投擲飛鏢為相互獨(dú)立事件,由此能求出4次投擲中恰有3次投中紅色靶區(qū)的概率.
(Ⅲ)兩次投擲得分ξ的可能取值為0,1,2,3,4,分別求出相應(yīng)的概率,由此能求出ξ的分布列及數(shù)學(xué)期望.
解答: 解:(Ⅰ)設(shè)“恰得1分”為事件A,
P(A)=
C
2
4
C
1
6
C
3
10
=
3
10

(Ⅱ)∵每次投擲飛鏢為相互獨(dú)立事件,
∴4次投擲中恰有3次投中紅色靶區(qū)的概率:
P4(3)=
C
3
4
(
1
2
)3(1-
1
2
)
=
1
4

(Ⅲ)兩次投擲得分ξ的可能取值為0,1,2,3,4,
P(ξ=0)=
1
4
×
1
4
=
1
16
,
P(ξ=1)=
C
1
2
×
1
4
×
1
4
=
1
8
,
P(ξ=2)=
C
1
2
×
1
2
×
1
4
+
1
4
×
1
4
=
5
16

P(ξ=3)=
C
1
2
×
1
2
×
1
4
=
1
4
,
P(ξ=4)=
1
2
×
1
2
=
1
4

∴ξ的分布列為:
 ξ 0 1 2 3 4
 P 
1
16
 
1
8
 
5
16
 
1
4
 
1
4
∴Eξ=
1
16
+1×
1
6
+2×
5
16
+3×
1
4
+4×
1
4
=
5
2
點(diǎn)評(píng):本題考查概率的求法,考查離散型隨機(jī)變量的分布列和數(shù)學(xué)期望的求法,解題時(shí)要認(rèn)真審題,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知:P為△ABC內(nèi)一點(diǎn),滿足
PA
+
PB
+
PC
=
0
,且
PA
PB
的夾角等于135°,
PB
PC
的夾角等于120°,若|
PC
|=4.
(1)求|
PA
|;
(2)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

現(xiàn)有4人去旅游,旅游地點(diǎn)有A、B兩個(gè)地方可以選擇.但4人都不知道去哪里玩,于是決定通過擲一枚質(zhì)地均勻的骰子決定自己去哪里玩,擲出能被3整除的數(shù)時(shí)去A地,擲出其他的數(shù)則去B地;
(1)求這4個(gè)人中恰好有1個(gè)人去A地的概率;
(2)求這4個(gè)人中去A地的人數(shù)大于去B地的人數(shù)的概率;
(3)用X,Y分別表示這4個(gè)人中去A、B兩地的人數(shù),記ξ=|X•Y|.求隨機(jī)變量ξ的分布列與數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex(x3+mx2-2x+2).
(Ⅰ)假設(shè)m=-2,求f(x)的極大值與極小值;
(Ⅱ)是否存在實(shí)數(shù)m,使f(x)在[-2,-1]上單調(diào)遞增?如果存在,求m的取值范圍;如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P為橢圓上任意一點(diǎn),∠F1PF2=α,求SF1PF2,|PF1||PF2|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}中,a1+a3+a5=21,a2+a4+a6=27,數(shù)列{bn}的前n項(xiàng)和為Sn,且4Sn=3bn-a1
(1)求an,bn
(2)若cn=
1
anan+1
,求數(shù)列{cn}的前n項(xiàng)和Tn
(3)當(dāng)n∈N*時(shí),求dn=
4bn+1
bn-1
的最小值和最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,三棱柱ABC-A1B1C1中,側(cè)棱AA1⊥平面ABC,△ABC為等腰直角三角形,∠BAC=90°,且AB=AA1,E、F分別是CC1,BC的中點(diǎn).
(1)求證:平面AB1F⊥平面AEF;
(2)求二面角B1-AE-F的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某保險(xiǎn)公司業(yè)務(wù)流程如下:
(1)保戶投保:填單交費(fèi)、公司承保、出具保單;
(2)保戶提賠:公司勘查、同意,則賠償,不同意,則拒賠.
畫出該公司業(yè)務(wù)流程圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某程序框圖如圖所示,現(xiàn)輸入如下四個(gè)函數(shù):f(x)=x2,f(x)=
1
x
,f(x)=ex,f(x)=sinx,則可以輸出的函數(shù)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案