分析 (Ⅰ)通過證明△ABD∽△ABB1,轉(zhuǎn)化證明AB1⊥BD,推出AB1⊥OC,即可證明AB1⊥平面BCD,然后證明平面AB1C⊥平面BCD.
(Ⅱ) 作A1K∥BD交BB1于K,連結(jié)KG,說明A1K∥平面BCD,推出平面A1KG∥平面BCD,證明BC∥KG,說明A1KBD為平行四邊形,推出K為BB1的中點(diǎn),得到G為B1C的中點(diǎn).
解答 (本小題滿分12分)
證明:(Ⅰ)∵ABB1A1為矩形,AB=2,$A{A_1}=2\sqrt{2}$,D是AA1的中點(diǎn),
∴∠BAD=90°,$∠AB{B_1}={90^0}$,$B{B_1}=2\sqrt{2}$,$AD=\frac{1}{2}A{A_1}=\sqrt{2}$
從而△ABD∽△ABB1,
∴∠ABD=∠AB1B…(2分)
∴$∠A{B_1}B+∠BA{B_1}=∠ABD+∠BA{B_1}=\frac{π}{2}$,∴$∠AOB=\frac{π}{2}$,從而AB1⊥BD…(4分)
∵OC⊥平面ABB1A1,AB1?平面ABB1A1,∴AB1⊥OC,
∵BD∩OC=O,∴AB1⊥平面BCD,
∵AB1?平面AB1C,∴平面AB1C⊥平面BCD…(6分)
(Ⅱ) 作A1K∥BD交BB1于K,連結(jié)KG,
∵A1K?平面BCD,BD?平面BCD,∴A1K∥平面BCD,
又A1G∥平面BCD,A1K∩A1G=A1
∴平面A1KG∥平面BCD,…(8分)
∵平面BB1C∩平面BCD=BC,平面BB1C∩平面A1KG=KG,∴BC∥KG…(10分)
在矩形ABB1A1中,∵AA1∥BB1,AA1=BB1
∴A1KBD為平行四邊形,
從而$BK={A_1}D=\frac{1}{2}A{A_1}=\frac{1}{2}B{B_1}$,∴K為BB1的中點(diǎn),
∴G為B1C的中點(diǎn).…(12分)
點(diǎn)評(píng) 本題考查平面與平面垂直的判定定理的應(yīng)用,直線與平面平行的判定定理的應(yīng)用,考查空間想象能力以及邏輯推理能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (3,+∞) | B. | [3,+∞) | C. | (1,3) | D. | (-∞,1] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $2\sqrt{2}$ | B. | $\sqrt{5}$ | C. | 3 | D. | $2\sqrt{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com