已知函數(shù)f(x)=xn-
4x
,且f(4)=3.
(1)判斷f(x)的奇偶性并說明理由;
(2)判斷f(x)在區(qū)間(0,+∞)上的單調(diào)性,并證明你的結(jié)論;
(3)若在區(qū)間[1,3]上,不等式f(x)>2x+2m+1恒成立,試確定實數(shù)m的取值范圍.
分析:(1)由f(4)=3可求n=1,從而可得f(x)=x-
4
x
,然后檢驗f(-x)與f(x)的關(guān)系即可判斷
(2)要判斷f(x)在(0,+∞)上的單調(diào)性,先設(shè)0<x1<x2,時,利用作差f(x1)-f(x2)判斷f(x1)與f(x2)的大小即可判斷
(3)由f(x)>2x+2m+1,可得2m+1<-x-
4
x
=-(x+
4
x
)
,只要求2m+1<-x-
4
x
=-(x+
4
x
)
min,可求m的范圍
解答:解:(1)由f(4)=3得:n=1
f(x)=x-
4
x
,其定義域為(-∞,0)∪(0,+∞)
f(-x)=-x-
4
-x
=-(x-
4
x
)=-f(x)

∴函數(shù)f(x)在(-∞,0)∪(0,+∞)上為奇函數(shù).
(2)函數(shù)f(x)在(0,+∞)上是增函數(shù),
證明如下:任取x1,x2,且0<x1<x2,
則x1-x2<0,x1x2>0
那么f(x1)-f(x2)=(x1-
4
x1
)-(x2-
4
x2
)
=
(x1-x2)(x1x2+4)
x1x2
<0

即f(x1)<f(x2
∴函數(shù)f(x)在(0,+∞)上是增函數(shù).
(3)由f(x)>2x+2m+1,
x-
4
x
>2x+2m+1

∴2m+1<-x-
4
x

∴當x∈[1,3],-(x+
4
x
)
的最小值是-5,
∴2m+1<-5,得m<-3,
所以實數(shù)m的取值范圍是(-∞,-3).
點評:本題主要考查了函數(shù)的奇偶性及函數(shù)的單調(diào)性的應(yīng)用,函數(shù)的恒成立與函數(shù)的最值求解的相互轉(zhuǎn)化的應(yīng)用,屬于函數(shù)知識的綜合應(yīng)用
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x-2m2+m+3(m∈Z)為偶函數(shù),且f(3)<f(5).
(1)求m的值,并確定f(x)的解析式;
(2)若g(x)=loga[f(x)-ax](a>0且a≠1),是否存在實數(shù)a,使g(x)在區(qū)間[2,3]上的最大值為2,若存在,請求出a的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設(shè)k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學 來源:浙江省東陽中學高三10月階段性考試數(shù)學理科試題 題型:022

已知函數(shù)f(x)的圖像在[a,b]上連續(xù)不斷,f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]),其中,min{f(x)|x∈D}表示函數(shù)f(x)在D上的最小值,max{f(x)|x∈D}表示函數(shù)f(x)在D上的最大值,若存在最小正整數(shù)k,使得f2(x)-f1(x)≤k(x-a)對任意的x∈[a,b]成立,則稱函數(shù)f(x)為[a,b]上的“k階收縮函數(shù)”.已知函數(shù)f(x)=x2,x∈[-1,4]為[-1,4]上的“k階收縮函數(shù)”,則k的值是_________.

查看答案和解析>>

科目:高中數(shù)學 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設(shè)k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學 來源:2009-2010學年河南省許昌市長葛三高高三第七次考試數(shù)學試卷(理科)(解析版) 題型:選擇題

已知函數(shù)f(x)、g(x),下列說法正確的是( )
A.f(x)是奇函數(shù),g(x)是奇函數(shù),則f(x)+g(x)是奇函數(shù)
B.f(x)是偶函數(shù),g(x)是偶函數(shù),則f(x)+g(x)是偶函數(shù)
C.f(x)是奇函數(shù),g(x)是偶函數(shù),則f(x)+g(x)一定是奇函數(shù)或偶函數(shù)
D.f(x)是奇函數(shù),g(x)是偶函數(shù),則f(x)+g(x)可以是奇函數(shù)或偶函數(shù)

查看答案和解析>>

同步練習冊答案