已知函數(shù)數(shù)學公式.則函數(shù)f(x)在區(qū)間數(shù)學公式上的值域為________.


分析:利用三角函數(shù)的恒等變換花間函數(shù)的解析式為sin(2x-),根據(jù)x的范圍求得2x-的范圍,可得sin(2x-)的范圍,
從而求得函數(shù)的值域.
解答:∵=sin2x-+=sin(2x-).
當x∈,有2x-∈[-,],-≤sin(2x-)≤,
∴-≤sin(2x-)-1≤,
故函數(shù)f(x)在區(qū)間上的值域為
故答案為
點評:本題主要考查三角函數(shù)的恒等變換及化簡求值,正弦函數(shù)的定義域和值域,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x),當x<0時,f(x)=x2+2x-1
(1)若f(x)為R上的奇函數(shù),則函數(shù)在R上的解析式為?
(2)若f(x)為R上的偶函數(shù),則函數(shù)在R上的解析式為?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)的圖象是連續(xù)不斷的,有如下x,f(x)對應值表:
x -2 -1 0
f(x) -10 3 2
則函數(shù)f(x)在區(qū)間
(-2,-1)
(-2,-1)
有零點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=|x2-2mx+n|,x∈R,下列結(jié)論:
①函數(shù)f(x)是偶函數(shù);
②若f(0)=f(2)時,則函數(shù)f(x)的圖象必關(guān)于直線x=1對稱;
③若m2-n≤0,則函數(shù)f(x)在區(qū)間(-∞,m]上是減函數(shù);
④函數(shù)f(x)有最小值|n-m2|.其中正確的序號是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax3-bx2的圖象過點P(-1,2),且在點P處的切線恰與直線x-3y=0垂直.則函數(shù)f(x)的解析式為
f(x)=x3+3x2
f(x)=x3+3x2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

已知函數(shù)數(shù)學公式,則函數(shù)f(x)的表達式為


  1. A.
    f(x)=x2+2x+1(x≥0)
  2. B.
    f(x)=x2+2x+1(x≥-1)
  3. C.
    f(x)=-x2-2x-1(x≥0)
  4. D.
    f(x)=-x2-2x-1(x≥-1)

查看答案和解析>>

同步練習冊答案