(本小題滿分12分)如圖所示,四棱錐中,為正方形, 分別是線段的中點. 求證:
(1)//平面 ; 
(2)平面⊥平面.
(1)證明見解析(2) 證明見解析

試題分析:(1)分別是線段的中點, 
又∵為正方形,, 
平面平面,
//平面.                                                   ……6分
(2)∵,又,
.            
為正方形,∴,
,∴⊥平面,
平面,
∴平面⊥平面.                                             ……12分
點評:證明空間線線、線面、面面平行或垂直時,要靈活運用判定定理和性質定理,先搞清楚證明需要的條件,再去找條件,特別注意的是定理中的隱含條件也是不可缺少的,要把定理需要的條件一一列清楚.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分) 如圖,在直三棱柱中,、分別是的中點,點上,。
 
求證:(1)EF∥平面ABC;    
(2)平面平面

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知:如圖,在四棱錐中,四邊形為正方形,,且,中點.
(Ⅰ)證明://平面
(Ⅱ)證明:平面平面;
(Ⅲ)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)在正四棱錐中,側棱的長為所成的角的大小等于

(1)求正四棱錐的體積;
(2)若正四棱錐的五個頂點都在球的表面上,求此球的半徑.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

圖形P-ABCD中,底面ABCD是正方形,PA⊥底面ABCD,PA=AB,Q是PC中點.AC,BD交于O點.

(1)二面角Q-BD-C的大。
(2)求二面角B-QD-C的大小.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在正方體ABCD—A1B1C1D1中,若E是A1C1的中點,則直線CE垂直于(  )
A.ACB.BDC.A1DD.A1D

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

是三個互不重合的平面,是一條直線,則下列命題中正確的是(   )
A.若的所成角相等,則B.若,則
C.若上有兩個點到的距離相等,則D.若,則

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知平面平面,,線段與線段交于點,若,則= (    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若將一個真命題中的“平面”換成“直線”、“直線”換成“平面”后仍是真命題,則該命題稱為“可換命題”.下列四個命題:①垂直于同一平面的兩直線平行;②垂直于同一平面的兩平面平行;③平行于同一直線的兩直線平行;④平行于同一平面的兩直線平行.其中“可換命題”的是(     )
A.①②B.①C.①③D.③④

查看答案和解析>>

同步練習冊答案