正項數(shù)列{an}滿足-(2n-1)an-2n=0.
(1)求數(shù)列{an}的通項公式an;
(2)令bn=,求數(shù)列{bn}的前n項和Tn.
(1) an=2n   (2) Tn=

解:(1)已知an與n的關系式,求an,這一類題目應把式子進行變形,得an=f(n),從而求出通項公式.
-(2n-1)an-2n=0,
得(an-2n)(an+1)=0.
故an=-1(因數(shù)列為正項數(shù)列,舍去)或an=2n.
(2)因bn==(-),
所以Tn=b1+b2+b3+…+bn
=(-)+(-)+(-)+…+(-)
=(-+-+-+…+-)
=(1-)
=.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知數(shù)列an=n-16,bn=(-1)n|n-15|,其中n∈N*.
(1)求滿足an+1=|bn|的所有正整數(shù)n的集合;
(2)若n≠16,求數(shù)列的最大值和最小值;
(3)記數(shù)列{anbn}的前n項和為Sn,求所有滿足S2m=S2n(m<n)的有序整數(shù)對(m,n).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知數(shù)列{an}為等差數(shù)列,若a1=-3,11a5=5a8,則使前n項和Sn取最小值的n=________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

對任意x∈R,函數(shù)f(x)滿足f(x+1)= ,設an=[f(n)]2-f(n),數(shù)列{an}的前15項的和為,則f(15)=    .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

傳說古希臘畢達哥拉斯學派的數(shù)學家經(jīng)常在沙灘上畫點或用小石子表示數(shù).他們研究過如圖所示的三角形數(shù):

將三角形數(shù)1,3,6,10,…記為數(shù)列{an},將可被5整除的三角形數(shù)按從小到大的順序組成一個新數(shù)列{bn},可以推測:
(1)b2012是數(shù)列{an}中的第    項;
(2)b2k-1=    .(用k表示)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設Sn是公差不為0的等差數(shù)列{an}的前n項和,且S1,S2,S4成等比數(shù)列,則等于(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在等差數(shù)列中,已知,則=(  )
A.10B.18 C.20D.28

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設曲線y=xn(1-x)在x=2處的切線與y軸交點的縱坐標為an,則數(shù)列{}的前n項和Sn等于    .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知數(shù)列{an}的通項公式是an=,那么這個數(shù)列是(  )
A.遞增數(shù)列B.遞減數(shù)列
C.擺動數(shù)列D.常數(shù)列

查看答案和解析>>

同步練習冊答案