橢圓上一點P到它的一個焦點的距離等于3,那么點P到另一個焦點的距離等于      . 
7
解:因為橢圓的定義滿足,到兩焦點距離和為2a,由已知a=5,b=3,c=4,故10-3=7
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知,是橢圓左右焦點,它的離心率,且被直線所截得的線段的中點的橫坐標為
(Ⅰ)求橢圓的標準方程;
(Ⅱ)設是其橢圓上的任意一點,當為鈍角時,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知F1,F2是橢圓的左、右焦點,點P在橢圓上,且記線段PF1與y軸的交點為Q,O為坐標原點,若△F1OQ與四邊形OF2PQ的面積之比為1: 2,則該橢圓的離心率等于   (       )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的離心率為,定點,橢圓短軸的端點是,,且.
(Ⅰ)求橢圓的方程;
(Ⅱ)設過點且斜率不為的直線交橢圓,兩點.試問軸上是否存在定點,使平分?若存在,求出點的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)已知橢圓C的中心O在原點,長軸在x軸上,焦距為,短軸長為8,
(1)求橢圓C的方程;
(2)過點作傾斜角為的直線交橢圓C于A、B兩點,求的面積。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知點F是橢圓的右焦點,過原點的直線交橢圓于點A、P,PF垂直于x軸,直線AF交橢圓于點B,,則該橢圓的離心率=___▲___.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

.(本小題滿分16分)
已知橢圓上的一動點到右焦點的最短距離為,且右焦點到右準線的距離等于短半軸的長.(1)求橢圓的方程;
(2)設,是橢圓上關于軸對稱的任意兩個不同的點,連結交橢圓于另一點,證明直線軸相交于定點
(3)在(2)的條件下,過點的直線與橢圓交于兩點,求的取值
范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

是橢圓的不垂直于對稱軸的弦,的中點,為坐標原點,則____________

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)已知橢圓(0<b<2)的離心率等于拋物線(p>0).
(1)若拋物線的焦點F在橢圓的頂點上,求橢圓和拋物線的方程;
(II)若拋物線的焦點F為,在拋物線上是否存在點P,使得過點P的切線與橢圓相交于A,B兩點,且滿足?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案