【題目】已知等差數(shù)列的前項(xiàng)和為,并且,,數(shù)列滿足:,,記數(shù)列的前項(xiàng)和為.
(1)求數(shù)列的通項(xiàng)公式及前項(xiàng)和公式;
(2)求數(shù)列的通項(xiàng)公式及前項(xiàng)和公式;
(3)記集合,若的子集個(gè)數(shù)為16,求實(shí)數(shù)的取值范圍.
【答案】(1)(2)(3)
【解析】
試題(1)數(shù)列是等差數(shù)列,可把已知用表示出來,列出方程組,解出,從而得到通項(xiàng)公式和膠項(xiàng)和;(2)由已知得,這是數(shù)列前后項(xiàng)的比值,因此可用連乘法求得通項(xiàng),即,從而有,它可看作是一個(gè)等差數(shù)列和一個(gè)等比數(shù)列的乘積,因此其前項(xiàng)和用乘公比錯(cuò)位相減法求得;(3)由(1)(2)求得,不等式恒成立,即恒成立,只要求得的最小值即可,先求出前面幾項(xiàng),觀察歸納猜想出單調(diào)性并給出證明(可用證明數(shù)列的單調(diào)性),從而可求得最小值,得范圍.
試題解析:(1)設(shè)數(shù)列的公差為,由題意得
(2)由題意得
疊乘得
由題意得①
②
②-①得:
(3)由上面可得令
則
下面研究數(shù)列的單調(diào)性,
時(shí),即單調(diào)遞減.
所以不等式解的個(gè)數(shù)為4,.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+(x-1)|x-a|.
(1)若a=-1,解方程f(x)=1;
(2)若函數(shù)f(x)在R上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(3)是否存在實(shí)數(shù)a,使不等式f(x)≥2x-3對任意x∈R恒成立?若存在,求出a的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)由方程到確定,對于函數(shù)給出下列命題:
①對任意,都有恒成立:
②,使得且同時(shí)成立;
③對于任意恒成立;
④對任意,,
都有恒成立.其中正確的命題共有( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(理)已知數(shù)列滿足(),首項(xiàng).
(1)求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和;
(3)數(shù)列滿足,記數(shù)列的前項(xiàng)和為,是△ABC的內(nèi)角,若對于任意恒成立,求角的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于定義在上的函數(shù),若函數(shù)滿足:①在區(qū)間上單調(diào)遞減;②存在常數(shù)p,使其值域?yàn)?/span>,則稱函數(shù)為的“漸近函數(shù)”;
(1)證明:函數(shù)是函數(shù)的漸近函數(shù),并求此時(shí)實(shí)數(shù)p的值;
(2)若函數(shù),證明:當(dāng)時(shí),不是的漸近函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)參加項(xiàng)目生產(chǎn)的工人為人,平均每人每年創(chuàng)造利潤萬元.根據(jù)現(xiàn)實(shí)的需要,從項(xiàng)目中調(diào)出人參與項(xiàng)目的售后服務(wù)工作,每人每年可以創(chuàng)造利潤萬元(),項(xiàng)目余下的工人每人每年創(chuàng)造利圖需要提高
(1)若要保證項(xiàng)目余下的工人創(chuàng)造的年總利潤不低于原來名工人創(chuàng)造的年總利潤,則最多調(diào)出多少人參加項(xiàng)目從事售后服務(wù)工作?
(2)在(1)的條件下,當(dāng)從項(xiàng)目調(diào)出的人數(shù)不能超過總?cè)藬?shù)的時(shí),才能使得項(xiàng)目中留崗工人創(chuàng)造的年總利潤始終不低于調(diào)出的工人所創(chuàng)造的年總利潤,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩人同時(shí)參加一次數(shù)學(xué)測試,共有20道選擇題,每題均有4個(gè)選項(xiàng),答對得3分,答錯(cuò)或不答得0分,甲和乙都解答了所有的試題,經(jīng)比較,他們只有2道題的選項(xiàng)不同,如果甲最終的得分為54分,那么乙的所有可能的得分值組成的集合為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某部影片的盈利額(即影片的票房收入與固定成本之差)記為,觀影人數(shù)記為,其函數(shù)圖象如圖(1)所示.由于目前該片盈利未達(dá)到預(yù)期,相關(guān)人員提出了兩種調(diào)整方案,圖(2)、圖(3)中的實(shí)線分別為調(diào)整后與的函數(shù)圖象.
給出下列四種說法:
①圖(2)對應(yīng)的方案是:提高票價(jià),并提高成本;
②圖(2)對應(yīng)的方案是:保持票價(jià)不變,并降低成本;
③圖(3)對應(yīng)的方案是:提高票價(jià),并保持成本不變;
④圖(3)對應(yīng)的方案是:提高票價(jià),并降低成本.
其中,正確的說法是____________.(填寫所有正確說法的編號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,數(shù)列的前項(xiàng)和為,且.
(1)求證:數(shù)列是等比數(shù)列,并求出通項(xiàng)公式;
(2)對于任意(其中,,均為正整數(shù)),若和的所有乘積的和記為,試求的值;
(3)設(shè),,若數(shù)列的前項(xiàng)和為,是否存在這樣的實(shí)數(shù),使得對于所有的都有成立,若存在,求出的取值范圍;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com