如圖,四棱錐P—ABCD中,PD⊥平面ABCD,PA與平面ABCD所成的角為60°,在四邊形ABCD中,∠D=∠DAB=90°,AB=4,CD=1,AD=2.

(1)建立適當(dāng)?shù)淖鴺?biāo)系,并寫(xiě)出點(diǎn)B、P的坐標(biāo);

(2)求異面直線(xiàn)PA與BC所成的角;

(3)若PB的中點(diǎn)為M,求證:平面AMC⊥平面PBC.

(1)解析:建立如圖所示的直角坐標(biāo)系D—xyz,

∵∠D=∠DAB=90°,AB=4,CD=1,AD=2,

∴A(2,0,0),C(0,1,0),B(2,4,0).

由PD⊥平面ABCD,得∠PAD為PA與平面ABCD所成的角.∴∠PAD=60°.

在Rt△PAD中,由AD=2,得PD=23.

∴P(0,0,23).

(2)解析:∵=(2,0,-2), =(-2,-3,0),

∴cos〈,〉==-.

∴PA與BC所成的角為arccos.

(3)證明:∵M(jìn)為PB的中點(diǎn),

∴點(diǎn)M的坐標(biāo)為(1,2,).

=(-1,2,), =(1,1,),PB=(2,4,-2).

·=(-1)×2+2×4+×(-2)=0,

·=1×2+1×4+3×(-2)=0,?

,.

∴PB⊥平面AMC.

又PB面PCB,

∴平面AMC⊥平面PBC.

 


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,四棱錐P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,
E是PC的中點(diǎn).求證:
(Ⅰ)CD⊥AE;
(Ⅱ)PD⊥平面ABE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,四棱錐P-ABCD中,底面ABCD是直角梯形,AB∥CD,∠DAB=60°,AB=AD=2CD=2,側(cè)面PAD⊥底面ABCD,且△PAD為等腰直角三角形,∠APD=90°,M為AP的中點(diǎn).
(1)求證:AD⊥PB;
(2)求三棱錐P-MBD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,四棱錐P-ABCD的底面ABCD是矩形,AB=2,BC=
2
,且側(cè)面PAB是正三角形,平面PAB⊥平面ABCD.
(1)求證:PD⊥AC;
(2)在棱PA上是否存在一點(diǎn)E,使得二面角E-BD-A的大小為45°,若存在,試求
AE
AP
的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥底面ABCD,且PA=AB=1,AD=
3
,點(diǎn)F是PB中點(diǎn).
(Ⅰ)若E為BC中點(diǎn),證明:EF∥平面PAC;
(Ⅱ)若E是BC邊上任一點(diǎn),證明:PE⊥AF;
(Ⅲ)若BE=
3
3
,求直線(xiàn)PA與平面PDE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,四棱錐P-ABCD,PA⊥平面ABCD,ABCD是直角梯形,DA⊥AB,CB⊥AB,PA=2AD=BC=2,AB=2
2
,設(shè)PC與AD的夾角為θ.
(1)求點(diǎn)A到平面PBD的距離;
(2)求θ的大。划(dāng)平面ABCD內(nèi)有一個(gè)動(dòng)點(diǎn)Q始終滿(mǎn)足PQ與AD的夾角為θ,求動(dòng)點(diǎn)Q的軌跡方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案