(本題滿分14分)
已知直線,圓.
(Ⅰ)證明:對任意,直線與圓恒有兩個公共點.
(Ⅱ)過圓心作于點,當變化時,求點的軌跡的方程.
(Ⅲ)直線與點的軌跡交于點,與圓交于點,是否存在的值,使得?若存在,試求出的值;若不存在,請說明理由.
(Ⅰ)見解析;(Ⅱ)軌跡的方程為.
(Ⅲ)存在,使得且.
【解析】本試題主要是考查了直線與圓的位置關(guān)系的綜合運用。
解:(Ⅰ)方法1:圓心的坐標為,半徑為3…………………1分
圓心到直線距離………………2分
∴
∴即
∴直線與圓恒有兩個公共點……………………4分
方法2:聯(lián)立方程組…………………………1分
消去,得………………2分
∴直線與圓恒有兩個公共點………………………4分
方法3:將圓化成標準方程為.…1分
由可得:.
解得,所以直線過定點.……………3分
因為在圓C內(nèi),所以直線與圓恒有兩個公共點.………………4分
(Ⅱ)設(shè)的中點為,由于°,
∴
∴點的軌跡為以為直徑的圓.………………7分
中點的坐標為,.
∴所以軌跡的方程為.………………9分
(Ⅲ)假設(shè)存在的值,使得.
如圖所示,
有,……10分
又,,
其中為C到直線的距離.……………12分
所以,化簡得.解得.
所以存在,使得且.……………………14分
科目:高中數(shù)學 來源: 題型:
π |
3 |
|
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本題滿分14分)如圖,四邊形ABCD為矩形,AD⊥平面ABE,AE=EB=BC=2,為上的點,且BF⊥平面ACE.
(1)求證:AE⊥BE;(2)求三棱錐D-AEC的體積;(3)設(shè)M在線段AB上,且滿足AM=2MB,試在線段CE上確定一點N,使得MN∥平面DAE.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年江蘇省高三上學期期中考試數(shù)學 題型:解答題
(本題滿分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}
(Ⅰ)若AB=[0,3],求實數(shù)m的值
(Ⅱ)若ACRB,求實數(shù)m的取值范圍
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年福建省高三上學期第三次月考理科數(shù)學卷 題型:解答題
(本題滿分14分)
已知點是⊙:上的任意一點,過作垂直軸于,動點滿足。
(1)求動點的軌跡方程;
(2)已知點,在動點的軌跡上是否存在兩個不重合的兩點、,使 (O是坐標原點),若存在,求出直線的方程,若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學 來源:2014屆江西省高一第二學期入學考試數(shù)學 題型:解答題
(本題滿分14分)已知函數(shù).
(1)求函數(shù)的定義域;
(2)判斷的奇偶性;
(3)方程是否有根?如果有根,請求出一個長度為的區(qū)間,使
;如果沒有,請說明理由?(注:區(qū)間的長度為).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com