邊長為a的等邊三角形的兩個頂點A、B分別在x正半軸與y正半軸上移動,第三個頂點C在第一象限,求第三個頂點C的軌跡方程.
考點:軌跡方程
專題:計算題,直線與圓
分析:設(shè)A(b,0),B(0,c),根據(jù)勾股定理可得(x-b)2+y2=x2+(y-c)2=b2+c2,求出b=
3
y-x,c=
3
x-y代入b2+c2=a2,即可得出結(jié)論.
解答: 解:設(shè)A(b,0),B(0,c),設(shè)C(x,y),
根據(jù)勾股定理可得(x-b)2+y2=x2+(y-c)2=b2+c2
解得b=
3
y-x,c=
3
x-y代入b2+c2=a2
解得4(x2-
3
xy+y2)=a2
點評:本題考查軌跡方程,考查勾股定理,考查學(xué)生的計算能力,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

物體運動的方程s=
1
3
t3+3,則t=2時的瞬時速度為( 。
A、2B、4C、-2D、-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

x
-
1
3x
10的展開式中含x的負(fù)整數(shù)指數(shù)冪的項數(shù)是( 。
A、0B、2C、4D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法正確的是(  )
A、命題“若am2<bm2,則a<b”的逆命題是真命題
B、命題“?x∈R,x2-x>0”的否定是“?x∈R,x2-x<0”
C、命題“p∨q”為真,則命題p,q都為真命題
D、“x>1”是“x>2”的必要不充分條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|1<x<4},B={x|x2-2x-3≤0},則A∩B=( 。
A、(-1,3)
B、(1,3]
C、[3,4)
D、[-1,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2014年中國男子籃球職業(yè)聯(lián)賽將由廣東隊和新疆隊爭奪參加決賽的一個名額,比賽采用5場3勝制,根據(jù)以往戰(zhàn)績統(tǒng)計,每場比賽廣東隊獲勝的概率為
2
3
,新疆隊獲勝的概率為
1
3

(Ⅰ)求廣東隊在0:1落后的情況下,最后獲勝的概率(結(jié)果用分?jǐn)?shù)表示).
(Ⅱ)前3場比賽,每場比賽主辦方將有30萬元的收益,以后的每場比賽將比前一場多收益10萬元,求本次比賽主辦方收益的數(shù)學(xué)期望(結(jié)果精確到小數(shù)點后一位數(shù)字).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a1=2,an=2-
1
an-1

(1)求證bn=
1
an-1
為等差數(shù)列;
(2)求cn=
1
bnbn+1
的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知,函數(shù)f(x)=ax2+bx(a,b∈R),g(x)=lnx.函數(shù)f(x)的圖象能否恒在函數(shù)y=bg(x)的上方?若能,求a,b的取值范圍;若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某單位從一所學(xué)校招收某類特殊人才.對20位已經(jīng)選拔入圍的學(xué)生進(jìn)行運動協(xié)調(diào)能力和邏輯思維能力的測試,其測試結(jié)果如下表:
邏輯思維能力

運動協(xié)調(diào)能力
一般 良好 優(yōu)秀
一般 2 2 1
良好 4 b 1
優(yōu)秀 1 3 a
例如,表中運動協(xié)調(diào)能力良好且邏輯思維能力一般的學(xué)生有4人.由于部分?jǐn)?shù)據(jù)丟失,只知道從這20位參加測試的學(xué)生中隨機抽取一位,抽到運動協(xié)調(diào)能力優(yōu)秀的學(xué)生的概率為
3
10

(Ⅰ)求a,b的值;
(Ⅱ)從參加測試的20位學(xué)生中任意抽取2位,設(shè)運動協(xié)調(diào)能力或邏輯思維能力優(yōu)秀的學(xué)生人數(shù)為ξ,求隨機變量ξ的分布列及其數(shù)學(xué)期望Eξ.

查看答案和解析>>

同步練習(xí)冊答案