已知F(1,0),P是平面上一動(dòng)點(diǎn),P到直線l:x=-1上的射影為點(diǎn)N,且滿足(=0

(1)求點(diǎn)P的軌跡C的方程;

(2)過點(diǎn)M(1,2)作曲線C的兩條弦MA,MB,設(shè)MA,MB所在直線的斜率分別為k1,k2,當(dāng)k1,k2變化且滿足k1+k2=-1時(shí),證明直線AB恒過定點(diǎn),并求出該定點(diǎn)坐標(biāo).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知Q(
3
,0)
,P為拋物線x2=4y上的動(dòng)點(diǎn),若P到拋物線的準(zhǔn)線y=-1的距離為d,記拋物線的焦點(diǎn)為F(0,1),則d+|PQ|的最小值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•浦東新區(qū)二模)已知
i
=(1,0),
c
=(0,
2
)
,若過定點(diǎn)A(0,
2
)
、以
i
c
(λ∈R)為法向量的直線l1與過點(diǎn)B(0,-
2
)
c
i
為法向量的直線l2相交于動(dòng)點(diǎn)P.
(1)求直線l1和l2的方程;
(2)求直線l1和l2的斜率之積k1k2的值,并證明必存在兩個(gè)定點(diǎn)E,F(xiàn),使得|
PE
|+|
PF
|
恒為定值;
(3)在(2)的條件下,若M,N是l:x=2
2
上的兩個(gè)動(dòng)點(diǎn),且
EM
FN
=0
,試問當(dāng)|MN|取最小值時(shí),向量
EM
+
FN
EF
是否平行,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓=1上任意一點(diǎn)P,由P向x軸作垂線段PQ,垂足為Q,點(diǎn)M在線段PQ上,且=2,點(diǎn)M的軌跡為曲線E.

(1)求曲線E的方程;

(2)若過定點(diǎn)F(0,2)的直線l交曲線E于不同的兩點(diǎn)G,H(點(diǎn)G在點(diǎn)F,H之間),且滿足=2,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年安徽省馬鞍山市高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

已知橢圓+=1(0<b<2)的左焦點(diǎn)為F,左、右頂點(diǎn)分別為A、C,上頂點(diǎn)為B,過F、B、C作圓P.
(I)當(dāng)b=時(shí),求圓P的方程;
(II)直線AB與圓P能否相切?證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案