已知tanα=2,求下列各式的值:
(1)
4sinα-2cosα
5sinα+3cosα
;        
(2)3sin2α+3sinαcosα-2cos2α.
考點(diǎn):同角三角函數(shù)基本關(guān)系的運(yùn)用
專題:三角函數(shù)的求值
分析:(1)原式分子分母除以cosα,利用同角三角函數(shù)間基本關(guān)系化簡(jiǎn),將tanα的值代入計(jì)算即可求出值;
(2)原式分母看做“1”,利用同角三角函數(shù)間基本關(guān)系化簡(jiǎn),將tanα的值代入計(jì)算即可求出值.
解答: 解:(1)∵tanα=2,
∴原式=
4tanα-2
5tanα+3
=
8-2
10+3
=
6
13
;
(2)∵tanα=2,
∴原式=
3sin2α+3sinαcosα-2cos2α
sin2α+cos2α
=
3tan2α+3tanα-2
tan2α+1
=
16
5
點(diǎn)評(píng):此題考查了同角三角函數(shù)基本關(guān)系的運(yùn)用,熟練掌握基本關(guān)系是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

①求函數(shù)y=
x-1
+
1
x2-5x+6
的定義域; 
②計(jì)算8 -
2
3
+lg
1
4
-lg25的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax2+bx+c(a,b,c∈R,a≠0),對(duì)任意的x∈R,都有f(x-4)=f(2-x)成立;
(1)求2a-b的值;
(2)若a=1,f(0)=2,f(x)在區(qū)間[t,t+1](t∈R)上的最小值為2,求t的值;
(3)若函數(shù)f(x)取得最小值0,且對(duì)任意x∈R,不等式x≤f(x)≤(
x+1
2
2恒成立,求函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知角α∈(0,π)且滿足sinα+cosα=
1
5

(Ⅰ)求
sin(π-α)+cos(-α)
tan(π+α)
的值;
(Ⅱ)求
1
2
sin2α+cos2α+1的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知AB⊥平面ACD,DE⊥平面ACD,△ACD為等邊三角形,AD=DE=2AB,F(xiàn)為CD的中點(diǎn).
(1)求證:AF∥平面BCE;
(2)求證:平面BCE⊥平面CDE;
(3)求二面角A-BC-F的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=
a
x
+xlnx,g(x)=x3-x2-3
(1)當(dāng)a=2時(shí),求曲線y=f(x)+g(x)在x=1處的切線方程
(2)如果對(duì)任意的s,t∈[
1
2
,2],恒有f(s)≥g(t)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
=(1,2),
b
=(-3,2).
(1)求|2
a
-
b
|的值;
(2)若k
a
+2
b
與2
a
-4
b
垂直,求實(shí)數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A={-1,3,2m-1},B={3,m2},若A∩B=B,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知兩個(gè)非零向量
a
b
,定義|
a
×
b
|=|
a
||
b
|sinθ,其中θ為
a
b
的夾角,若
a
=(-3,4),
b
=(0,2),則|
a
×
b
|的值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案