將連續(xù)n2(n≥3)個(gè)正整數(shù)填入n×n的方格中,使其每行、每列、每條對角線上的各數(shù)之和都相等,這個(gè)正方形叫做n階幻方數(shù)陣,記f(n)為n階幻方數(shù)陣對角線上各數(shù)之和,如圖就是一個(gè)3階幻方數(shù)陣,可知f(3)=15.若將等差數(shù)列3,4,5,6,…,的前16項(xiàng)填入4×4方格中,可得到一個(gè)4階幻方數(shù)陣,則f(4)=

[  ]
A.

44

B.

42

C.

40

D.

36

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)將連續(xù)n2(n≥3)個(gè)正整數(shù)填入n×n方格中,使其每行.每列.每條對角線上的數(shù)的和都相等,這個(gè)正方形叫做n階幻方數(shù)陣.記f(n)為n階幻方數(shù)陣對角線上數(shù)的和,如右圖就是一個(gè)3階幻方數(shù)陣,可知f(3)=15.若將等差數(shù)列:3,4,5,6,…的前16項(xiàng)填入4×4方格中,可得到一個(gè)4階幻方數(shù)陣,則其對角線上的和f(4)等于( 。
A、44B、42C、40D、36

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將連續(xù)n2(n≥3)個(gè)正整數(shù)填入n×n方格中,使其每行.每列.每條對角線上的數(shù)的和都相等,這個(gè)正方形叫做n階幻方數(shù)陣.記f(n)為n階幻方數(shù)陣對角線上數(shù)的和,如圖就是一個(gè)3階幻方數(shù)陣,可知f(3)=15.若將等差數(shù)列:3,4,5,6,…的前16項(xiàng)填入4×4方格中,可得到一個(gè)4階幻方數(shù)陣,則其對角線上的和f(4)等于
42
42

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年福建省福州三中高二(上)期中數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

將連續(xù)n2(n≥3)個(gè)正整數(shù)填入n×n方格中,使其每行.每列.每條對角線上的數(shù)的和都相等,這個(gè)正方形叫做n階幻方數(shù)陣.記f(n)為n階幻方數(shù)陣對角線上數(shù)的和,如右圖就是一個(gè)3階幻方數(shù)陣,可知f(3)=15.若將等差數(shù)列:3,4,5,6,…的前16項(xiàng)填入4×4方格中,可得到一個(gè)4階幻方數(shù)陣,則其對角線上的和f(4)等于( )

A.44
B.42
C.40
D.36

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年福建省福州三中高二(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

將連續(xù)n2(n≥3)個(gè)正整數(shù)填入n×n方格中,使其每行.每列.每條對角線上的數(shù)的和都相等,這個(gè)正方形叫做n階幻方數(shù)陣.記f(n)為n階幻方數(shù)陣對角線上數(shù)的和,如右圖就是一個(gè)3階幻方數(shù)陣,可知f(3)=15.若將等差數(shù)列:3,4,5,6,…的前16項(xiàng)填入4×4方格中,可得到一個(gè)4階幻方數(shù)陣,則其對角線上的和f(4)等于( )

A.44
B.42
C.40
D.36

查看答案和解析>>

同步練習(xí)冊答案