過拋物線的焦點F作斜率分別為的兩條不同的直線,且,相交于點A,B,相交于點C,D。以AB,CD為直徑的圓M,圓N(M,N為圓心)的公共弦所在的直線記為。
(I)若,證明;;
(II)若點M到直線的距離的最小值為,求拋物線E的方程。

(I)見解析(II)

解析

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,A,B是橢圓的兩個頂點, ,直線AB的斜率為.求橢圓的方程;(2)設直線平行于AB,與x,y軸分別交于點M、N,與橢圓相交于C、D,
證明:的面積等于的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

極坐標系與直角坐標系xOy有相同的長度單位,以原點D為極點,以x軸正半軸為極軸,曲線Cl的極坐標方程為,曲線C2的參數(shù)方程為為參數(shù))。
(1)當時,求曲線Cl與C2公共點的直角坐標; 
(2)若,當變化時,設曲線C1與C2的公共點為A,B,試求AB中點M軌跡的極坐標方程,并指出它表示什么曲線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,拋物線

(I);
(II)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的焦距為4,且過點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設為橢圓上一點,過點軸的垂線,垂足為。取點,連接,過點的垂線交軸于點。點是點關于軸的對稱點,作直線,問這樣作出的直線是否與橢圓C一定有唯一的公共點?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

平面內(nèi)動點到點的距離等于它到直線的距離,記點的軌跡為曲
(Ⅰ)求曲線的方程;
(Ⅱ)若點,上的不同三點,且滿足.證明: 不可能為直角三角形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓C:的長軸長為,離心率
Ⅰ)求橢圓C的標準方程;
Ⅱ)若過點B(2,0)的直線(斜率不等于零)與橢圓C交于不同的兩點E,F(xiàn)(E在B,F(xiàn)之間),且OBE與OBF的面積之比為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,設橢圓的中心為原點O,長軸在x軸上,上頂點為A,左、右焦點分別為F1,F(xiàn)2,線段OF1,OF2的中點分別為B1,B2,且△AB1B2是面積為4的直角三角形.

(1)求該橢圓的離心率和標準方程;
(2)過B1作直線l交橢圓于P,Q兩點,使PB2⊥QB2,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,拋物線的焦點為F,準線與x軸的交點為A.點C在拋物線E上,以C為圓心,為半徑作圓,設圓C與準線交于不同的兩點M,N.

(I)若點C的縱坐標為2,求;
(II)若,求圓C的半徑.

查看答案和解析>>

同步練習冊答案