已知橢圓
方程為
,左、右焦點分別是
,若橢圓
上的點
到
的距離和等于
.
(Ⅰ)寫出橢圓
的方程和焦點坐標;
(Ⅱ)設點
是橢圓
的動點,求線段
中點
的軌跡方程;
(Ⅲ)直線
過定點
,且與橢圓
交于不同的兩點
,若
為銳角(
為坐標原點),求直線
的斜率
的取值范圍.
試題分析:(Ⅰ)由題意得:
,
又點
橢圓
上,∴
∴ 橢圓
的方程
,焦點
. ……5分
(Ⅱ)設橢圓
上的動點
,線段
中點
,
由題意得:
,
代入橢圓
的方程得,
,
即
為線段
中點
的軌跡方程. ……9分
(Ⅲ)由題意得直線
的斜率存在且不為
,
設
代入
整理,
得
,
①
設
,∴
∵
為銳角
,即
,
又
.
∴
, ∴
.、
由①、②得
,∴
的取值范圍是
. ……14分
點評:圓錐曲線的綜合問題一般離不開直線方程和圓錐曲線方程聯(lián)立方程組,運算量較大,注意到聯(lián)立得到直線方程后,不要忘記驗證
.
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:填空題
如圖,已知橢圓
的左、右準線分別為
,且分別交
軸于
兩點,從
上一點
發(fā)出一條光線經過橢圓的左焦點
被
軸反射后與
交于點
,若
,且
,則橢圓的離心率等于
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
如圖,F(xiàn)
1,F(xiàn)
2是雙曲線
的左、右焦點,過F
1的直線
l與C的左、右兩支分別交于A,B兩點.若|AB|:|BF
2|:|AF
2|=3:4:5,則雙曲線的離心率為
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分) 已知直線L:y=x+1與曲線C:
交于不同的兩點A,B;O為坐標原點。
(1)若
,試探究在曲線C上僅存在幾個點到直線L的距離恰為
?并說明理由;
(2)若
,且a>b,
,試求曲線C的離心率e的取值范圍。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知雙曲線
的兩個焦點分別為
、
,則滿足△
的周長為
的動點
的軌跡方程為 ( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知拋物線
:
的焦點為
,
、
是拋物線
上異于坐標原點
的不同兩點,拋物線
在點
、
處的切線分別為
、
,且
,
與
相交于點
.
(1) 求點
的縱坐標;
(2) 證明:
、
、
三點共線;
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
直線
被曲線
截得的弦長為
;
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知雙曲線
的兩焦點為
,過
作
軸的垂線交雙曲線于
兩點,若
內切圓的半徑為
,則此雙曲線的離心率為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知拋物線C關于
軸對稱,它的頂點在坐標原點,并且經過點
(1)求拋物線C的標準方程
(2)直線
過拋物線的焦點F,與拋物線交于A、B兩點,線段AB的中點M的橫坐標為3,求弦長
以及直線
的方程。
查看答案和解析>>