(2012•韶關二模)以拋物線y2=4x的焦點為圓心,且過坐標原點的圓的方程為( 。
分析:先由拋物線的標準方程求得其焦點坐標,即所求圓的圓心坐標,再由圓過原點,求得圓的半徑,最后由圓的標準方程寫出所求圓方程即可
解答:解;∵拋物線y2=4x的焦點坐標為(1,0),
∴所求圓的圓心坐標為(1,0)
∵所求圓過坐標原點(0,0)
∴其半徑為1-0=1
∴所求圓的標準方程為(x-1)2+y2=1
點評:本題主要考查了圓的標準方程的求法,拋物線的標準方程及其幾何性質,屬基礎題
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•韶關二模)數(shù)列{an}對任意n∈N*,滿足an+1=an+1,a3=2.
(1)求數(shù)列{an}通項公式;
(2)若bn=(
13
)an+n
,求{bn}的通項公式及前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•韶關二模)已知A是單位圓上的點,且點A在第二象限,點B是此圓與x軸正半軸的交點,記∠AOB=α,若點A的縱坐標為
3
5
.則sinα=
3
5
3
5
;tan(π-2α)=
24
7
24
7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•韶關二模)已知R是實數(shù)集,M={x|x2-2x>0},N是函數(shù)y=
x
的定義域,則N∩CRM=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•韶關二模)定義符號函數(shù)sgnx=
1,x>0
0,x=0
-1,x<0
,設f(x)=
sgn(
1
2
-x)+1
2
•f1(x)+
sgn( x-
1
2
)+1 
2
•f2(x),x∈[0,1],若f1(x)=x+
1
2
,f2(x)=2(1-x),則f(x)的最大值等于( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•韶關二模)在△ABC中,三個內角A,B,C的對邊分別為a,b,c,其中c=2,且
cosA
cosB
=
b
a
=
3
1

(1)求證:△ABC是直角三角形;
(2)設圓O過A,B,C三點,點P位于劣弧
AC
上,∠PAB=θ,用θ的三角函數(shù)表示三角形△PAC的面積,并求△PAC面積最大值.

查看答案和解析>>

同步練習冊答案