已知數(shù)列{an}的前n項(xiàng)和Sn=2an-3•2n+4,n=1,2,3,….
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)Tn為數(shù)列{Sn-4}的前n項(xiàng)和,求Tn
(Ⅰ)∵a1=S1=2a1-2,∴a1=2.
當(dāng)n≥2時(shí),an=Sn-Sn-1,an=2an-1+3×2n-1,于是
an
2n
=
an-1
2n-1
+
3
2
;方法
bn=
an
2n
,則數(shù)列{bn}是首項(xiàng)b1=1、公差為
3
2
的等差數(shù)列,bn=
3n-1
2
;
∴an=2nbn=2n-1(3n-1).
(Ⅱ)∵Sn-4=2n(3n-4)=3×2n×n-2n+2,
∴Tn=3(2×1+22×2++2n×n)-4(2+22++2n),
記Wn=2×1+22×2++2n×n①,則2Wn=22×1+23×2++2n+1×n②,
①-②有-Wn=2×1+22++2n-2n+1×n=2n+1(1-n)-2,
∴Wn=2n+1(n-1)+2.
Tn=3×[2n+1(n-1)+2]-4
2(1-2n)
1-2
=2n+1(3n-7)+14•
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知向量,n∈N*,向量垂直,且a1=1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足bn=log2an+1,求數(shù)列{an·bn}的前n項(xiàng)和Sn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知△ABC中,a,b,c成等差數(shù)列,公差d=1,3b=20ccosC,則sinA:sinB:sinC=( 。
A.2:3:4B.5:6:7C.3:4:5D.4:5:6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

等差數(shù)列20,17,14,11,…中第一個(gè)負(fù)數(shù)項(xiàng)是(  )
A.第7項(xiàng)B.第8項(xiàng)C.第9項(xiàng)D.第10項(xiàng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知等差數(shù)列{an}滿足a2=0,a6+a8=-10
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{
an
2n-1
}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知{an}為等差數(shù)列,a1+a3+a5=15,a4=3,則公差等于( 。
A.-1B.-2C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在等差數(shù)列{an}中,a2=5,a6=21,記數(shù)列{
1
an
}
的前n項(xiàng)和為Sn,若S2n+1-Sn
m
15
對(duì)n∈N+恒成立,則正整數(shù)m的最小值為_(kāi)_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在等比數(shù)列中,已知前n項(xiàng)和=,則的值為(     )
A.-1B.1C.5D.-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)為數(shù)列的前項(xiàng)和,對(duì)任意的N,都有為常數(shù),且
(1)求證:數(shù)列是等比數(shù)列;
(2)設(shè)數(shù)列的公比函數(shù)關(guān)系為,數(shù)列滿足,點(diǎn)落在 上,,N,求數(shù)列的通項(xiàng)公式;
(3)在滿足(2)的條件下,求數(shù)列的前項(xiàng)和,使恒成立時(shí),求的最小值.[

查看答案和解析>>

同步練習(xí)冊(cè)答案