設(shè)橢圓C:
x2
a2
+
y2
2
=1(a>0)
的左右焦點(diǎn)分別為F1、F2,A是橢圓C上的一點(diǎn),且
AF2
F1F2
=0
,坐標(biāo)原點(diǎn)O到直線AF1的距離為
1
3
|OF1|

(1)求橢圓C的方程;
(2)設(shè)Q是橢圓C上的一點(diǎn),過(guò)點(diǎn)Q的直線l交x軸于點(diǎn)F(-1,0),交y軸于點(diǎn)M,若|MQ|=2|QF|,求直線l的斜率.
分析:(1)題設(shè)知F1和F2的坐標(biāo),根據(jù)
AF2
F1F2
=0
,推斷有
AF2
F1F2
,設(shè)點(diǎn)A的坐標(biāo)為根據(jù)原點(diǎn)O到直線AF1的距離求得a,進(jìn)而求得b.答案可得.
(2)設(shè)直線斜率為k,則直線l的方程為y=k(x+1),設(shè)Q(x1,y1),由于Q,F(xiàn),三點(diǎn)共線,且|MQ|=|2QF|.進(jìn)而可得(x1,y1-k)=±2(x1+1,y),求得x1和y1,代入橢圓方程即可求得k,進(jìn)而得到直線斜率.
解答:解:(1)由題設(shè)知F1(-
a2-2
,0),F(xiàn)2
a2-2
,0),其中a>
2

由于
AF2
F1F2
=0
,則有
AF2
F1F2
,所以點(diǎn)A的坐標(biāo)為(
a2-2
,±
2
a

故AF1所在直線方程為y=±(
x
a
a2-2
+
1
a
),所以坐標(biāo)原點(diǎn)O到直線AF1的距離為
a2-2
a2-1
,
又|OF1|=
a2-2
,所以
a2-2
a2-1
=|=
1
3
a2-2
,解得:a=2.
∴所求橢圓的方程為
x2
4
+
y2
2
 =1

(2)由題意可知直線l的斜率存在,設(shè)直線斜率為k,則直線l的方程為y=k(x+1),故M(0,k).
設(shè)Q(x1,y1),由于Q,F(xiàn),三點(diǎn)共線,且|MQ|=|2QF|.
根據(jù)題意得(x1,y1-k)=±2(x1+1,y1),解得
x1=-2
y1=-k
x1=-
2
3
y1=
k
3

又Q在橢圓C上,故
4
4
+
k2
2
=1
4
9
4
+
(
k
3
)
2
3
=1

解得k=0,k=±4,綜上,直線的斜率為0或±4
點(diǎn)評(píng):本題主要考查了橢圓的標(biāo)準(zhǔn)方程和直線與橢圓的關(guān)系.常需要直線方程和橢圓方程聯(lián)立,根據(jù)韋達(dá)定理求得問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)橢圓C:
x2
a2
+
y2
b2
=1
(a>b>1)右焦點(diǎn)為F,它與直線l:y=k(x+1)相交于P、Q兩點(diǎn),l與x軸的交點(diǎn)M到橢圓左準(zhǔn)線的距離為d,若橢圓的焦距是b與d+|MF|的等差中項(xiàng).
(1)求橢圓離心率e;
(2)設(shè)N與M關(guān)于原點(diǎn)O對(duì)稱(chēng),若以N為圓心,b為半徑的圓與l相切,且
OP
OQ
=-
5
3
求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)設(shè)橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左.右焦點(diǎn)分別為F1F2,上頂點(diǎn)為A,過(guò)點(diǎn)A與AF2垂直的直線交x軸負(fù)半軸于點(diǎn)Q,且2
F1F2
+
F2Q
=
0

(1)若過(guò)A.Q.F2三點(diǎn)的圓恰好與直線l:x-
3
y-3=0相切,求橢圓C的方程;
(2)在(1)的條件下,過(guò)右焦點(diǎn)F2作斜率為k的直線l與橢圓C交于M.N兩點(diǎn).試證明:
1
|F2M|
+
1
|F2N|
為定值;②在x軸上是否存在點(diǎn)P(m,0)使得以PM,PN為鄰邊的平行四邊形是菱形,如果存在,求出m的取值范圍,如果不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•鹽城一模)設(shè)橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
恒過(guò)定點(diǎn)A(1,2),則橢圓的中心到準(zhǔn)線的距離的最小值
5
+2
5
+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)橢圓C:
x2
a2
+
y2
b2
=1
(a,b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,若P 是橢圓上的一點(diǎn),|
PF1
|+|
PF2
|=4
,離心率e=
3
2

(1)求橢圓C的方程;
(2)若P 是第一象限內(nèi)該橢圓上的一點(diǎn),
PF1
PF2
=-
5
4
,求點(diǎn)P的坐標(biāo);
(3)設(shè)過(guò)定點(diǎn)P(0,2)的直線與橢圓交于不同的兩點(diǎn)A,B,且∠AOB為銳角(其中O為坐標(biāo)原點(diǎn)),求直線l的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左,右焦點(diǎn)分別為F1,F(xiàn)2,離心率為e=
2
2
,以F1為圓心,|F1F2|為半徑的圓與直線x-
3
y-3=0
相切.
(I)求橢圓C的方程;
(II)直線y=x交橢圓C于A、B兩點(diǎn),D為橢圓上異于A、B的點(diǎn),求△ABD面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案