求函數(shù)y=sin(2x+
π
6
)cos(2x+
π
6
)的最值,周期及單調(diào)減區(qū)間.
考點(diǎn):兩角和與差的正弦函數(shù),三角函數(shù)的周期性及其求法,正弦函數(shù)的單調(diào)性,三角函數(shù)的最值
專題:三角函數(shù)的求值
分析:由兩角和與差的三角函數(shù)公式和及二倍角公式化簡(jiǎn)已知函數(shù)可得y=
1
2
sin(4x+
π
3
),易得答案.
解答: 解:化簡(jiǎn)可得y=sin(2x+
π
6
)cos(2x+
π
6
)=
1
2
sin(4x+
π
3

∴函數(shù)的最大值為
1
2
,最小值為-
1
2
,
周期T=
4
=
π
2
,
由2kπ+
π
2
≤4x+
π
3
≤2kπ+
2
解得
2
+
π
24
≤x≤
2
+
24

∴函數(shù)的單調(diào)減區(qū)間為:[
2
+
π
24
,
2
+
24
],k∈Z
點(diǎn)評(píng):本題考查兩角和與差的三角函數(shù)公式,涉及三角函數(shù)的單調(diào)性和周期性以及二倍角公式,屬中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

正三角形ABC中,D,E分別是AB,AC的中點(diǎn),則以B,C為焦點(diǎn)且過(guò)D,E的雙曲線的離心率是(  )
A、
3
+1
B、
3
-1
C、2
3
D、
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若z1=a+2i,z2=3-4i,且
z1
z2
為純虛數(shù),則實(shí)數(shù)a的值是( 。
A、2
B、
7
3
C、
8
3
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,該程序運(yùn)行后的輸出結(jié)果為( 。
A、0B、3C、12D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在等比數(shù)列{an}中,已知a2=2,a3=4,求數(shù)列{an}的通項(xiàng)公式及數(shù)列的前5項(xiàng)的和S5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,AB為⊙O的直徑,過(guò)點(diǎn)B作⊙O的切線BC,OC交⊙O于點(diǎn)E,AE的延長(zhǎng)線交BC于點(diǎn)D.
(1)求證:CE2=CD•CB;
(2)若AB=BC=2,求CE和CD的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四面體ABCD中,O是BD的中點(diǎn),CA=CB=CD=BD=2,AB=AD=
2

(Ⅰ)求證:AO⊥平面BCD;
(Ⅱ)求二面角A-CD-B的正切值;
(Ⅲ)求點(diǎn)E到平面ACD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A(2,8),B(x1,y1),C(x2,y2)在拋物線y2=2px,(p>0)上,△ABC的重心與此拋物線的焦點(diǎn)F重合(如圖)
(1)寫出該拋物線的方程和焦點(diǎn)F的坐標(biāo);
(2)求線段BC中點(diǎn)M的坐標(biāo);
(3)求BC所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知α∈(0,
π
2
),sinα=
3
5
,求tanα.

查看答案和解析>>

同步練習(xí)冊(cè)答案