已知函數(shù), 數(shù)列滿足
(1)求數(shù)列的通項(xiàng)公式;
(2)令,若對(duì)一切成立,求最小正整數(shù)m.

(1);(2)

解析試題分析:(1)由可知數(shù)列為等差數(shù)列,易求得通項(xiàng)公式;
(2)由第(1)的結(jié)果
所以可用拆項(xiàng)法求和進(jìn)而求得的最小值.
解:(1)
是以為公差,首項(xiàng)的等差數(shù)列

(2)當(dāng)時(shí),
當(dāng)時(shí),上式同樣成立

對(duì)一切成立,
遞增,且
,
考點(diǎn):1、等差數(shù)列通項(xiàng)公式;2、拆項(xiàng)法求特列數(shù)列的前項(xiàng)和;3、含參數(shù)的不等式恒成立問題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列{}中,,前項(xiàng)和
(1)求通項(xiàng)
(2)若從數(shù)列{}中依次取第項(xiàng)、第項(xiàng)、第項(xiàng)…第項(xiàng)……按原來的順序組成一個(gè)新的數(shù)列{},求數(shù)列{}的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)Sn表示數(shù)列的前n項(xiàng)和.
(1)若為等差數(shù)列,  推導(dǎo)Sn的計(jì)算公式;
(2)若, 且對(duì)所有正整數(shù)n, 有. 判斷是否為等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

數(shù)列的前項(xiàng)和為,且的等差中項(xiàng),等差數(shù)列滿足.
(1)求數(shù)列、的通項(xiàng)公式;
(2)設(shè),數(shù)列的前項(xiàng)和為,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知為正項(xiàng)等比數(shù)列,,為等差數(shù)列的前
項(xiàng)和,.
(1)求的通項(xiàng)公式;
(2)設(shè),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列滿足:
(1)令,判斷是否為等差數(shù)列,并求出;
(2)記的前項(xiàng)的和為,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列滿足).
(1)若數(shù)列是等差數(shù)列,求它的首項(xiàng)和公差;
(2)證明:數(shù)列不可能是等比數(shù)列;
(3)若),試求實(shí)數(shù)的值,使得數(shù)列為等比數(shù)列;并求此時(shí)數(shù)列的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知:公差大于零的等差數(shù)列的前n項(xiàng)和為Sn,且滿足
求數(shù)列的通項(xiàng)公式;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

成等差數(shù)列的三個(gè)正數(shù)的和等于15,并且這三個(gè)數(shù)分別加上2、5、13后成為等比數(shù)列中的、.
(1)求數(shù)列的通項(xiàng)公式;
(2)數(shù)列的前n項(xiàng)和為,求證:數(shù)列是等比數(shù)列.

查看答案和解析>>

同步練習(xí)冊答案