已知函數(shù)數(shù)學公式,a∈R.
(1)當a=-2時,求f(x)在閉區(qū)間[-1,1]上的最大值與最小值;
(2)若線段AB:y=2x+3(0≤x≤2)與導函數(shù)y=f'(x)的圖象只有一個交點,且交點在線段AB的內(nèi)部,試求a的取值范圍.

解:(1)當a=-2時,.(1分)
求導得f'(x)=x2+4x=x(x+4).(2分).
令f'(x)=0,解得:x=-4或x=0.(3分)
列表如下:(6分)
x-1(-1,0)0(0,1)1
f'(x)-0+
f(x)0
所以,f(x)在閉區(qū)間[-1,1]上的最大值是,最小值是0.(7分)
(2)y=f'(x)=x2-2ax+a2+2a.(8分)
聯(lián)立方程組(9分)
得x2-2(a+1)x+a2+2a-3=0.(10分)
設g(x)=x2-2(a+1)x+a2+2a-3,則方程g(x)=0在區(qū)間(0,2)內(nèi)只有一根,
相當于g(0)•g(2)<0,即(a2+2a-3)•(a2-2a-3)<0,(12分)
解得-3<a<-1或1<a<3.(14分)
分析:(1)欲求函數(shù)的最大值與最小值,通過列表格的方法研究原函數(shù)的單調(diào)性及在端點處和極值處的函數(shù)值的大。
(2)先將導函數(shù)與線段方程聯(lián)立,得到一個二次函數(shù)g(x),此函數(shù)在區(qū)間(0,2)內(nèi)只有一根,即g(0)•g(2)<0,即可求出a的取值范圍.
點評:考查學生利用導數(shù)求函數(shù)在閉區(qū)間上的最值的能力以及函數(shù)和方程的綜合運用能力,對于兩個函數(shù)的交點問題,一般是將兩個函數(shù)聯(lián)立,轉(zhuǎn)化成方程根的個數(shù)問題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2012-2013學年北京市十一學校高三(上)第四次月考數(shù)學試卷(理科)(解析版) 題型:解答題

已知函數(shù)(a∈R且a≠0).
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ) 記函數(shù)y=F(x)的圖象為曲線C.設點A(x1,y1),B(x2,y2)是曲線C上的不同兩點,如果在曲線C上存在點M(x,y),使得:①;②曲線C在M處的切線平行于直線AB,則稱函數(shù)F(x)存在“中值相依切線”.
試問:函數(shù)f(x)是否存在“中值相依切線”,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江西省百所重點高中高三(上)段考數(shù)學試卷(理科)(解析版) 題型:解答題

已知函數(shù)(a∈R且a≠0).
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ) 記函數(shù)y=F(x)的圖象為曲線C.設點A(x1,y1),B(x2,y2)是曲線C上的不同兩點,如果在曲線C上存在點M(x,y),使得:①;②曲線C在M處的切線平行于直線AB,則稱函數(shù)F(x)存在“中值相依切線”.
試問:函數(shù)f(x)是否存在“中值相依切線”,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江蘇省常州高級中學高三(上)12月月考數(shù)學試卷(理科)(解析版) 題型:解答題

已知函數(shù)(a∈R且a≠0).
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ) 記函數(shù)y=F(x)的圖象為曲線C.設點A(x1,y1),B(x2,y2)是曲線C上的不同兩點,如果在曲線C上存在點M(x,y),使得:①;②曲線C在M處的切線平行于直線AB,則稱函數(shù)F(x)存在“中值相依切線”.
試問:函數(shù)f(x)是否存在“中值相依切線”,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年甘肅省天水一中高一(下)第二次段考數(shù)學試卷(解析版) 題型:解答題

已知函數(shù),a∈R.
(1)當a=1時,求函數(shù)f(x)的最大值;
(2)如果對于區(qū)間上的任意一個x,都有f(x)≤1成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆廣東省梅州市高二第二學期3月月考理科數(shù)學試卷 題型:解答題

 

已知函數(shù)  (a∈R).

 (1)若在[1,e]上是增函數(shù),求a的取值范圍; 

(2)若a=1,1≤x≤e,證明:<.

 

查看答案和解析>>

同步練習冊答案