已知x>0,y>0,求證:.

 

見解析

【解析】原不等式等價(jià)于(xy)24xy,(xy)20顯然成立.故原不等式得證.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第四章第3課時(shí)練習(xí)卷(解析版) 題型:解答題

已知平面向量a(1,x),b(2x3x),xR.

(1)a⊥b,x的值;

(2)a∥b,|ab|的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第四章第1課時(shí)練習(xí)卷(解析版) 題型:填空題

△ABC,c,b.若點(diǎn)D滿足2,________(b、c表示)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第六章第4課時(shí)練習(xí)卷(解析版) 題型:填空題

某種產(chǎn)品按下列三種方案兩次提價(jià).方案甲:第一次提價(jià)p%,第二次提價(jià)q%;方案乙:第一次提價(jià)q%,第二次提價(jià)p%;方案丙:第一次提價(jià)%,第二次提價(jià)%.其中p>q>0上述三種方案中提價(jià)最多的是________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第六章第3課時(shí)練習(xí)卷(解析版) 題型:解答題

某造紙廠擬建一座平面圖形為矩形且面積為162m2的三級(jí)污水處理池,池的深度一定(平面圖如圖所示)如果池四周圍墻建造單價(jià)為400/m2,中間兩道隔墻建造單價(jià)為248/m2池底建造單價(jià)為80/m2,水池所有墻的厚度忽略不計(jì).

(1)試設(shè)計(jì)污水處理池的長和寬,使總造價(jià)最低,并求出最低總造價(jià);

(2)若由于地形限制,該池的長和寬都不能超過16m試設(shè)計(jì)污水池的長和寬,使總造價(jià)最低,并求出最低總造價(jià).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第六章第3課時(shí)練習(xí)卷(解析版) 題型:填空題

x>0,x的最小值為________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第六章第2課時(shí)練習(xí)卷(解析版) 題型:填空題

設(shè)變量x、y滿足2x3y的最大值是________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第六章第1課時(shí)練習(xí)卷(解析版) 題型:解答題

解關(guān)于x的不等式(1ax)2<1.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第八章第5課時(shí)練習(xí)卷(解析版) 題型:解答題

如圖,四棱錐P-ABCDPA底面ABCD,ABAD,點(diǎn)E在線段AD,CE∥AB.

(1)求證:CE⊥平面PAD;

(2)PAAB1AD3,CD,∠CDA45°,求四棱錐P-ABCD的體積.

 

查看答案和解析>>

同步練習(xí)冊答案