【題目】如圖所示,已知三棱柱中, , , .
(1)求證: ;
(2)若, ,求二面角的余弦值.
【答案】(1)見解析;(2).
【解析】試題分析: (1)證明線面垂直,一般利用線面垂直判定定理,即從線線垂直出發(fā)給予證明,而線線垂直的尋找與論證往往需要結合平幾知識,如利用等腰三角形性質得底邊上中線垂直底面得線線垂直,(2)一般利用空間向量數(shù)量積求二面角大小,先根據(jù)條件確定恰當空間直角坐標系,設立各點坐標,利用方程組求各面法向量,利用向量數(shù)量積求法向量夾角余弦值,最后根據(jù)法向量夾角與二面角關系確定二面角的余弦值.
試題解析:(1)∵四邊形為平行四邊形,且, ,
∴為等邊三角形,
取中點,連接, ,則,
∵,∴,
∵, 平面, 平面,
∴平面,∴.
(2)∵為等邊三角形, ,∴,
∵在中, , , 為中點,
∴,
∵, ,∴,
∴,
又,
∴平面.
以為原點, , , 方向為, , 軸的正向,建立如圖所示的坐標系, , , , ,
則,則, , ,
則平面的一個法向量,
設為平面的法向量,則令,∴,
∴,
∴.
點睛:垂直、平行關系證明中應用轉化與化歸思想的常見類型.
(1)證明線面、面面平行,需轉化為證明線線平行.
(2)證明線面垂直,需轉化為證明線線垂直.
(3)證明線線垂直,需轉化為證明線面垂直.
科目:高中數(shù)學 來源: 題型:
【題目】心理學家分析發(fā)現(xiàn)“喜歡空間想象”與“性別”有關,某數(shù)學興趣小組為了驗證此結論,從全體組員中按分層抽樣的方法抽取50名同學(男生30人、女生20人),給每位同學立體幾何題、代數(shù)題各一道,讓各位同學自由選擇一道題進行解答,選題情況統(tǒng)計如下表:(單位:人)
立體幾何題 | 代數(shù)題 | 總計 | |
男同學 | 22 | 8 | 30 |
女同學 | 8 | 12 | 20 |
總計 | 30 | 20 | 50 |
(1)能否有97.5%以上的把握認為“喜歡空間想象”與“性別”有關?
(2)經統(tǒng)計得,選擇做立體幾何題的學生正答率為,且答對的學生中男生人數(shù)是女生人數(shù)的5倍,現(xiàn)從選擇做幾何題的8名女生中任意抽取兩人對她們的答題情況進行研究,記抽取的兩人中答對的人數(shù)為,求的分布列及數(shù)學期望.
附表及公式:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了參加師大附中第30界田徑運動會的開幕式,高三年級某6個班聯(lián)合到集市購買了6根竹竿,作為班旗的旗桿之用,它們的長度分別為3.8,4.3,3.6,4.5,4.0,4.1(單位:米).
(Ⅰ)若從中隨機抽取兩根竹竿,求長度之差不超過0.5米的概率;
(Ⅱ)若長度不小于4米的竹竿價格為每根10元,長度小于4米的竹竿價格為每根元.從這6根竹竿中隨機抽取兩根,若期望這兩根竹竿的價格之和為18元,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知隨機變量的取值為不大于的非負整數(shù)值,它的分布列為:
0 | 1 | 2 | n | ||
其中()滿足: ,且.
定義由生成的函數(shù),令.
(I)若由生成的函數(shù),求的值;
(II)求證:隨機變量的數(shù)學期望, 的方差;
()
(Ⅲ)現(xiàn)投擲一枚骰子兩次,隨機變量表示兩次擲出的點數(shù)之和,此時由生成的函數(shù)記為,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)是偶函數(shù).
(1)求的值;
(2)設,若函數(shù)與的圖象有且只有一個公共點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了研究家用轎車在高速公路上的車速情況,交通部門隨機對50名家用轎車駕駛員進行調查,得到其在高速公路上行駛時的平均車速情況為:在30名男性駕駛員中,平均車速超過的有20人,不超過的有10人.在20名女性駕駛員中,平均車速超過的有5人,不超過的有15人.
(Ⅰ)完成下面的列聯(lián)表,并判斷是否有的把握認為平均車速超過的人與性別有關;
平均車數(shù)超過 人數(shù) | 平均車速不超過 人數(shù) | 合計 | |
男性駕駛員人數(shù) | |||
女性駕駛員人數(shù) | |||
合計 |
(Ⅱ)以上述數(shù)據(jù)樣本來估計總體,現(xiàn)從高速公路上行駛的大量家用轎車中隨即抽取3輛,記這3輛車中駕駛員為女性且車速不超過的車輛數(shù)為,若每次抽取的結果是相互獨立的,求的分布列和數(shù)學期望
參考公式:,其中.
參考數(shù)據(jù):
0.150 | 0.100 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某班從6名班干部中(其中男生4人,女生2人),任選3人參加學校的義務勞動.
(1)設所選3人中女生人數(shù)為ξ,求ξ的分布列;
(2)求男生甲或女生乙被選中的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)將函數(shù)的圖像向右平移個單位得到函數(shù)的圖像,若,求函數(shù)的值域;
(2)已知,分別為中角的對邊,且滿足,求的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分12分) 某中學的環(huán)保社團參照國家環(huán)境標準制定了該校所在區(qū)域空氣質量指數(shù)與空氣質量等級對應關系如下表(假設該區(qū)域空氣質量指數(shù)不會超過):
空氣質量指數(shù) | ||||||
空氣質量等級 | 級優(yōu) | 級良 | 級輕度污染 | 級中度污染 | 級重度污染 | 級嚴重污染 |
該社團將該校區(qū)在年天的空氣質量指數(shù)監(jiān)測數(shù)據(jù)作為樣本,繪制的頻率分布直方圖如下圖,把該直方圖所得頻率估計為概率.
(Ⅰ)請估算年(以天計算)全年空氣質量優(yōu)良的天數(shù)(未滿一天按一天計算);
(Ⅱ)該校年月、日將作為高考考場,若這兩天中某天出現(xiàn)級重度污染,需要凈化空氣費用元,出現(xiàn)級嚴重污染,需要凈化空氣費用元,記這兩天凈化空氣總費用為元,求的分布列及數(shù)學期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com