【題目】已知函數(shù)f(x)=lnx﹣ax(a∈R).
(1)若曲線y=f(x)存在一條切線與直線y=x平行,求a的取值范圍;
(2)當(dāng)0<a<2時(shí),若f(x)在[a,2]上的最大值為﹣ ,求a的值.
【答案】
(1)f′(x)= ﹣a,
若曲線y=f(x)存在一條切線與直線y=x平行,
則 ﹣a=1,即a= ﹣1有解,
由x>0,得:a>﹣1
(2)f′(x)= ﹣a,
令f′(x)>0,解得:0<x< ,
令f′(x)<0,解得:x> ,
故f(x)在(0, )遞增,在( ,+∞)遞減,
①2≤ 即0<a≤ 時(shí),
f(x)在[a,2]遞增,f(x)max=f(2)=ln2﹣2a=﹣ ,
解得:a= ln2+ > (舍);
②a< <2即 <a<1時(shí),
f(x)在[a, )遞增,在( ,2]遞減,
故f(x)max=f( )=ln ﹣1=﹣ ,
解得:a= ,
③ ≤a,即1≤a<2時(shí),
f(x)在[a,2]遞減,f(x)max=f(a)=lna﹣a2=﹣ ,
函數(shù)n(a)=lna﹣a2,a∈[1,2),n′(a)= ﹣2a遞減,n′(1)=﹣1<0,
故n(a)在[1,2)遞減,n(a)<n(1)=﹣1<﹣ ,
故方程lna﹣a2=﹣ 無解;
綜上a=
【解析】(1)求出函數(shù)的導(dǎo)數(shù),得到關(guān)于a的函數(shù)式,根據(jù)函數(shù)的單調(diào)性求出a的范圍即可;(2)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,求出函數(shù)的最大值,得到關(guān)于a的方程,解出即可.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解函數(shù)的最大(小)值與導(dǎo)數(shù)的相關(guān)知識(shí),掌握求函數(shù)在上的最大值與最小值的步驟:(1)求函數(shù)在內(nèi)的極值;(2)將函數(shù)的各極值與端點(diǎn)處的函數(shù)值,比較,其中最大的是一個(gè)最大值,最小的是最小值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中心在原點(diǎn)的橢圓C1與雙曲線C2具有相同的焦點(diǎn),F(xiàn)1(﹣c,0),F(xiàn)2(c,0),P為C1與C2在第一象限的交點(diǎn),|PF1|=|F1F2|且|PF2|=5,若橢圓C1的離心率 ,則雙曲線的離心率e2的范圍是( )
A.
B.
C.(2,3)
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=mex﹣lnx﹣1.
(1)當(dāng)m=1,x∈[1,+∞)時(shí),求y=f(x)的值域;
(2)當(dāng)m≥1時(shí),證明:f(x)>1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,底面ABCD是平行四邊形,∠ACB=90°,平面PAD⊥平面ABCD,PA=BC=1,PD=AB= ,E、F分別為線段PD和BC的中點(diǎn).
(Ⅰ)求證:CE∥平面PAF;
(Ⅱ)在線段BC上是否存在一點(diǎn)G,使得平面PAG和平面PGC所成二面角的大小為60°?若存在,試確定G的位置;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是我國古代一部重要的數(shù)學(xué)著作,書中有如下問題:“今有良馬與駑馬發(fā)長安,至齊.齊去長安三千里,良馬初日行一百九十三里,日增一十三里,駕馬初日行九十七里,日減半里.良馬先至齊,復(fù)還迎駑馬.何日相逢,”其大意為:“現(xiàn)在有良馬和駑馬同時(shí)從長安出發(fā)到齊去,已知長安和齊的距離是3000里,良馬第一天行193里,之后每天比前一天多行13里,駑馬第一天行97里,之后每天比前一天少行0.5里.良馬到齊后,立刻返回去迎駑馬,多少天后兩馬相遇.”現(xiàn)有三種說法:①駑馬第九日走了93里路;②良馬四日共走了930里路;③行駛5天后,良馬和駑馬相距615里. 那么,這3個(gè)說法里正確的個(gè)數(shù)為( )
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義max{a,b}= ,已知函數(shù)f(x)=max{|2x﹣1|,ax2+b},其中a<0,b∈R,若f(0)=b,則實(shí)數(shù)b的范圍為 , 若f(x)的最小值為1,則a+b= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}中,a1=4,an+1= ,n∈N* , Sn為{an}的前n項(xiàng)和.
(Ⅰ)求證:n∈N*時(shí),an>an+1;
(Ⅱ)求證:n∈N*時(shí),2≤Sn﹣2n< .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , a1= ,Sn=n2an﹣n(n﹣1),n=1,2,…
(1)證明:數(shù)列{ Sn}是等差數(shù)列,并求Sn;
(2)設(shè)bn= ,求證:b1+b2+…+bn< .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】利用計(jì)算機(jī)產(chǎn)生120個(gè)隨機(jī)正整數(shù),其最高位數(shù)字(如:34的最高位數(shù)字為3,567的最高位數(shù)字為5)的頻數(shù)分布圖如圖所示,若從這120個(gè)正整數(shù)中任意取出一個(gè),設(shè)其最高位數(shù)字為d(d=1,2,…,9)的概率為P,下列選項(xiàng)中,最能反映P與d的關(guān)系的是( )
A.P=lg(1+ )
B.P=
C.P=
D.P= ×
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com