已知全集U=R,集合A={x|-3≤x<1},函數(shù)f(x)=log2(x+3)的定義域?yàn)锽,求:
(1)A∩B,A∪B;
(2)A∪(∁UB)
考點(diǎn):交、并、補(bǔ)集的混合運(yùn)算
專題:集合
分析:求出函數(shù)y=log2(x+2)的定義域,確定出集合B,然后根據(jù)交集、補(bǔ)集和并集的定義解答即可.
解答: 解:由已知:f(x)=log2(x+3)的定義域?yàn)锽={x|x>-3}…(2分)
(1)A∪B={x|x≥-3},…(5分)A∩B={x|-3<x<1}…(8分)
(2)CUB={x|x≤-3],…(10分)∴A∪(CUB)={x|x<1}…(12分)
點(diǎn)評(píng):此題屬于以函數(shù)的定義域?yàn)槠脚_(tái),考查了交、并、補(bǔ)集的混合運(yùn)算,是高考中?嫉幕绢}型.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

以下判斷,正確的是(  )
A、當(dāng)0<x<2時(shí),因?yàn)椋?-x)(2-x)x≤(
2-x+2-x+x
3
3,當(dāng)2-x=x時(shí)等號(hào)成立,所以(2-x)(2-x)x的最大值為(2-1)(2-1)×1=1
B、|sinθ+
2
sinθ
|(θ≠kπ,k∈Z)的最小值為2
2
C、若實(shí)數(shù)x,y,z滿足xyz=1,則x+y+z的最小值為3
D、若?>0,|x-a|<?,|y+b|<?,則|2x+y-2a+b|<3?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知線段AB的端點(diǎn)B的坐標(biāo)為(1,3),端點(diǎn)A在圓C:(x+1)2+y2=4上運(yùn)動(dòng).
(1)求線段AB的中點(diǎn)M的軌跡;
(2)過B點(diǎn)的直線L與圓C有兩個(gè)交點(diǎn)A,D.當(dāng)CA⊥CD時(shí),求L的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=2px(p>0),拋物線上縱坐標(biāo)為1的點(diǎn)到焦點(diǎn)的距離為p,過點(diǎn)M(1,0)作斜率為k的直線l交拋物線于A,B兩點(diǎn),A點(diǎn)關(guān)于x軸的對(duì)稱點(diǎn)為C,直線BC交x軸于Q點(diǎn).
(Ⅰ)求p的值;
(Ⅱ)探究:當(dāng)k變化時(shí),點(diǎn)Q是否為定點(diǎn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖:四棱錐P-ABCD中,PA⊥AD,AB=AC=2PA=2,PC=
5

AD∥BC,∠BAD=150°.
(Ⅰ)證明:PA⊥平面ABCD;
(Ⅱ)求點(diǎn)B到平面PAC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=asin(ωx+
π
3
),g(x)=btan(ωx-
π
3
)(ω>0)的最小正周期之和為
2
,且f(
π
2
)=g(
π
2
),f(
π
4
)+
3
g(
π
4
)=1,
(1)求f(x)和g(x)的解析式;
(2)求g(x)的單調(diào)區(qū)間和對(duì)稱中心;
(3)解不等式-
1
2
≤g(x)<
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2014年春節(jié)期間,高速公路車輛劇增,高速公路管理測(cè)控中心在一特定位置從七座以下小型汽車中按先后順序,每間隔50輛就抽取一輛的抽樣方法抽取40輛進(jìn)行電子測(cè)速調(diào)查,將它們的車速(km/h)分成六段[80,85),[85,90),[90,95),[95,100),[100,105),[105,110)后得到如圖的頻率分布直圖.
(1)測(cè)控中心在采樣中,用到的是什么抽樣方法?并估計(jì)這40輛車車速的平均數(shù);
(2)從車速在[80,90)的車輛中任抽取2輛,求抽出的2輛車中車速在[85,90)的車輛數(shù)的概率.參考數(shù)據(jù):82.5×0.01+87.5×0.02+92.5×0.04+97.5×0.06+102.5×0.05+107.5×0.02=19.4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a為不等于0的實(shí)數(shù),函數(shù)f(x)=(x2+ax)ex在(-∞,0)上有且僅有一個(gè)極值點(diǎn)x0
(Ⅰ)求a的取值范圍;
(Ⅱ)(。┣笞C:-2<x0<-1;
(ⅱ)設(shè)g(x)=
a
x+1
,若x1∈(-∞,0),x2∈[0,+∞),記|f(x1)-g(x2)|的最大值為M,求M的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:(x-1)2+y2=16內(nèi)有一點(diǎn)P(2,2),過點(diǎn)P作直線l交圓C于A,B兩點(diǎn).
(1)當(dāng)l經(jīng)過圓心C時(shí),求直線l的方程;
(2)當(dāng)弦AB被點(diǎn)P平分時(shí),寫出直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案