【題目】若不等式(m﹣1)x2+(m﹣1)x+2>0的解集是R,則m的范圍是(
A.(1,9)
B.(﹣∞,1]∪(9,+∞)
C.[1,9)
D.(﹣∞,1)∪(9,+∞)

【答案】C
【解析】解:當m﹣1=0,即m=1時,原不等式可化為2>0恒成立,滿足不等式解集為R, 當m﹣1≠0,即m≠1時,
若不等式(m﹣1)x2+(m﹣1)x+2>0的解集是R,
,
解得:1<m<9.
綜上所述,m的取值范圍為[1,9).
故選:C.
若m﹣1=0,即m=1時,滿足條件,若m﹣1≠0,即m≠1,若不等式(m﹣1)x2+(m﹣1)x+2>0的解集是R,則對應的函數(shù)的圖象開口朝上,且與x軸沒有交點,進而構造關于m的不等式,進而得到m的取值范圍.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=kax﹣ax(a>0且a≠1,k∈R),f(x)是定義域為R的奇函數(shù).
(1)求k的值
(2)已知f(1)= ,函數(shù)g(x)=a2x+a2x﹣2f(x),x∈[0,1],求g(x)的值域;
(3)在第(2)問的條件下,試問是否存在正整數(shù)λ,使得f(2x)≥λf(x)對任意x∈[﹣ ]恒成立?若存在,請求出所有的正整數(shù)λ;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知向量 =(sinθ,1), =(1,cosθ),﹣ <θ . (Ⅰ)若 ,求tanθ的值.
(Ⅱ)求| + |的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某商品最近30天的價格f(t)(元)與時間t滿足關系式:f(t)= ,且知銷售量g(t)與時間t滿足關系式 g(t)=﹣t+30,(0≤t≤30,t∈N+),求該商品的日銷售額的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)g(x)=(a+1)x2+1(a>0)的圖象恒過定點A,且點A又在函數(shù) 的圖象上.
(1)求實數(shù)a的值;
(2)解不等式f(x)<
(3)函數(shù)h(x)=|g(x+2)﹣2|的圖象與直線y=2b有兩個不同的交點時,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合A={x|﹣2≤x≤5},B={x|m+1≤x≤2m﹣1}.
(1)當m=3時,求集合A∩B,A∪B;
(2)若BA,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角A,B,C所對的邊長分別是a,b,c.滿足2acosC+ccosA=b.
(Ⅰ)求角C的大;
(Ⅱ)求sinAcosB+sinB的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)
(1)請在直角坐標系中畫出函數(shù)f(x)的圖象,并寫出該函數(shù)的單調區(qū)間;
(2)若函數(shù)g(x)=f(x)﹣m恰有3個不同零點,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司租地建倉庫,每月土地占用費y1與車庫到車站的距離x成反比,而每月的庫存貨物的運費y2與車庫到車站的距離x成正比.如果在距離車站10公里處建立倉庫,這兩項費用y1和y2分別為2萬元和8萬元.求若要使得這兩項費用之和最小時,倉庫應建在距離車站多遠處?此時最少費用為多少萬元?

查看答案和解析>>

同步練習冊答案