在直角坐標系
中,點
到兩點
的距離之和等于4,設(shè)點
的軌跡為
,直線
與
交于
兩點.
(1)寫出
的方程;
(2)若點
在第一象限,證明當(dāng)
時,恒有
.
(1)
;(2)詳見解析.
試題分析:(1)根據(jù)橢圓的定義,可判斷點的軌跡為橢圓,再根據(jù)橢圓的基本量,容易寫出橢圓的方程,求曲線的方程一般可設(shè)動點坐標為
,然后去探求動點坐標滿足的方程,但如果根據(jù)特殊曲線的定義,先行判斷出曲線的形狀(如橢圓,圓,拋物線等),則可直接寫出其方程;(2)一般地,涉及直線與二次曲線相交的問題,則可聯(lián)立方程組,或解出交點坐標,或設(shè)而不求,利用一元二次方程根與系數(shù)的關(guān)系建立關(guān)系求出參數(shù)的值(取值范圍),本題可設(shè)
,根據(jù)兩點坐標滿足的方程,去判斷
的符號.
試題解析:(1)設(shè)
,由橢圓定義可知,點
的軌跡
是以
為焦點,長半軸為2的橢圓,它的短半軸
, 2分
故曲線
的方程為
. 5分
(2)證明:設(shè)
,其坐標滿足
消去
并整理,得
7分
故
. 9分
. 11分
因為
在第一象限,故
.
由
知
,從而
.
又
,故
,
即在題設(shè)條件下,恒有
. 13分
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
的離心率為
,直線
與以原點為圓心、橢圓
的短半軸長為半徑的圓
相切.
(1)求橢圓
的方程;
(2)如圖,
、
、
是橢圓
的頂點,
是橢圓
上除頂點外的任意點,直線
交
軸于點
,直線
交
于點
,設(shè)
的斜率為
,
的斜率為
,求證:
為定值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
:
,
(1)若橢圓的長軸長為4,離心率為
,求橢圓的標準方程;
(2)在(1)的條件下,設(shè)過定點
的直線
與橢圓
交于不同的兩點
,且
為銳角(
為坐標原點),求直線
的斜率
的取值范圍;
(3)過原點
任意作兩條互相垂直的直線與橢圓
:
相交于
四點,設(shè)原點
到四邊形
的一邊距離為
,試求
時
滿足的條件.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
的兩個焦點
和上下兩個頂點
是一個邊長為2且∠F
1B
1F
2為
的菱形的四個頂點.
(1)求橢圓
的方程;
(2)過右焦點F
2 ,斜率為
(
)的直線
與橢圓
相交于
兩點,A為橢圓的右頂點,直線
、
分別交直線
于點
、
,線段
的中點為
,記直線
的斜率為
.求證:
為定值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
.
(1)若
在
處取得極值,求
的值;
(2)求
的單調(diào)區(qū)間;
(3)若
且
,函數(shù)
,若對于
,總存在
使得
,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
橢圓的左、右焦點分別為
和
,且橢圓過點
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)過點
作不與
軸垂直的直線
交該橢圓于
兩點,
為橢圓的左頂點,試判斷
的大小是否為定值,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知橢圓
:
(a>b>0)的離心率為
,過右焦點
且斜率為
(k>0)的直線于
相交于
、
兩點,若
,則
=( )
A.1 | B. | C. | D.2 |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
如圖,
是橢圓
在第一象限上的動點,
是橢圓的焦點,
是
的平分線上的一點,且
,則
的取值范圍是
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
橢圓
的左、右焦點分別為F
1、F
2,P是橢圓上的一點,
,且
,垂足為
,若四邊形
為平行四邊形,則橢圓的離心率的取值范圍是( )
查看答案和解析>>