為橢圓上任意一點(diǎn),、為左右焦點(diǎn).如圖所示:

(1)若的中點(diǎn)為,求證;
(2)若,求的值.
(1))證明:在 中,為中位線

(2)

試題分析:(1)由橢圓定義知,則,由條件知點(diǎn)、分別是、的中點(diǎn),所以的中位線,則,從而命題得證;(2)根據(jù)橢圓定義,在中有,,又由條件,從這些信息中可得到提示,應(yīng)從余弦定理入手,考慮到,所以需將兩邊平方,得,將其代入余弦定理,得到關(guān)于的方程,從而可得解.
試題解析:(1)證明:在 中,為中位線
           5分
(2) ,
中,
, 
                                         12分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓兩焦點(diǎn)坐標(biāo)分別為,,且經(jīng)過點(diǎn)
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)已知點(diǎn),直線與橢圓交于兩點(diǎn).若△是以為直角頂點(diǎn)的等腰直角三角形,試求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(13分)點(diǎn)P為圓上一個(gè)動點(diǎn),M為點(diǎn)P在y軸上的投影,動點(diǎn)Q滿足
(1)求動點(diǎn)Q的軌跡C的方程;
(2)一條直線l過點(diǎn),交曲線C于A、B兩點(diǎn),且A、B同在以點(diǎn)D(0,1)為圓心的圓上,求直線l的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的中心在原點(diǎn),焦點(diǎn)在x軸上,離心率為,且經(jīng)過點(diǎn),直線交橢圓于不同的兩點(diǎn)A,B.
(Ⅰ)求橢圓的方程;
(Ⅱ)求m的取值范圍;
(Ⅲ)若直線不過點(diǎn)M,求證:直線MA、MB與x軸圍成一個(gè)等腰三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)橢圓E:=1()過點(diǎn)M(2,), N(,1),為坐標(biāo)原點(diǎn)
(I)求橢圓E的方程;
(II)是否存在以原點(diǎn)為圓心的圓,使得該圓的任意一條切線與橢圓E恒有兩個(gè)交點(diǎn)A,B,且?若存在,寫出該圓的方程;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓的短半軸為半徑的圓與直線相切,過點(diǎn)P(4,0)且不垂直于x軸直線與橢圓C相交于A、B兩點(diǎn).
(1)求橢圓C的方程;
(2)求的取值范圍;
(3)若B點(diǎn)關(guān)于x軸的對稱點(diǎn)是E,證明:直線AE與x軸相交于定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的離心率為,橢圓短軸的一個(gè)端點(diǎn)與兩個(gè)焦點(diǎn)構(gòu)成的三角形的面積為
(Ⅰ)求橢圓的方程;
(Ⅱ)已知動直線與橢圓相交于、兩點(diǎn). ①若線段中點(diǎn)的橫坐標(biāo)為,求斜率的值;②若點(diǎn),求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知O為坐標(biāo)原點(diǎn),P是曲線上到直線距離最小的點(diǎn),且直線OP是雙曲線 的一條漸近線。則的公共點(diǎn)個(gè)數(shù)是(  )
A.2B.1
C.0D.不能確定,與、的值有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)、分別為雙曲線的左、右焦點(diǎn),為雙曲線的左頂點(diǎn),以為直徑的圓交雙曲線某條漸過線、兩點(diǎn),且滿足,則該雙曲線的離心率為(    )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案