【題目】如果命題 p(n) 對 n=k 成立,那么它對 n=k+2 也成立,又若 p(n) 對 n=2 成立,則下列結(jié)論正確的是( )
A.p(n) 對所有自然數(shù) n 成立
B.p(n) 對所有正偶數(shù) n 成立
C.p(n) 對所有正奇數(shù) n 成立
D.p(n) 對所有大于1的自然數(shù) n 成立

【答案】B
【解析】因為命題 成立,那么它對 也成立,所以若 成立,則 對所有正偶數(shù) 成立,選B
【考點精析】通過靈活運用數(shù)學(xué)歸納法的步驟,掌握

  1. :A.n=1(或成立,推的基礎(chǔ);B.設(shè)n=k成立; C.n=k+1也成立,完成兩步,就可以斷定任何自然數(shù)(n>=,)結(jié)論都成立

即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的離心率為,且過點, 是橢圓上異于長軸端點的兩點.

(1)求橢圓的方程;

(2)已知直線 ,且,垂足為, ,垂足為,若,且的面積是面積的5倍,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)是二次函數(shù),其圖象過點(0,1),且在點(-2,f(-2))處的切線方程為2x+y+3=0
(1)求f(x)的表達式;
(2)求f(x)的圖象與兩坐標(biāo)軸所圍成圖形的面積;
(3)若直線x=-t(0<t<1)把f(x)的圖象與兩坐標(biāo)軸所圍成圖形的面積二等分,求t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】擬用長度為l的鋼筋焊接一個如圖所示的矩形框架結(jié)構(gòu)(鋼筋體積、焊接點均忽略不計),其中G、H分別為框架梁MN、CD的中點,MN∥CD,設(shè)框架總面積為S平方米,BN=2CN=2x米.

(1)若S=18平方米,且l不大于27米,試求CN長度的取值范圍;
(2)若l=21米,求當(dāng)CN為多少米時,才能使總面積S最大,并求最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的左頂點為,右焦點為,過點且斜率為1的直線交橢圓于另一點,交軸于點

(1)求橢圓的方程;

(2)過點作直線與橢圓交于兩點,連接為坐標(biāo)原點)并延長交橢圓于點,求面積的最大值及取最大值時直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來城市“共享單車”的投放在我國各地迅猛發(fā)展,“共享單車”為人們出行提供了很大的便利,但也給城市的管理帶來了一些困難,現(xiàn)某城市為了解人們對“共享單車”投放的認可度,對年齡段的人群隨機抽取人進行了一次“你是否贊成投放共享單車”的問卷調(diào)查,根據(jù)調(diào)查結(jié)果得到如下統(tǒng)計表和各年齡段人數(shù)頻率分布直方圖:

(1)補全頻率分布直方圖,并求的值;

(2)在第四、五、六組“贊成投放共享單車”的人中,用分層抽樣的方法抽取7人參加“共享單車”騎車體驗活動,求第四、五、六組應(yīng)分別抽取的人數(shù);

(3)在(2)中抽取的7人中隨機選派2人作為正副隊長,求所選派的2人沒有第四組人的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC的兩條高線所在直線的方程為2x﹣3y+1=0和x+y=0,頂點A(1,2),求:
(1)BC邊所在直線的方程;
(2)△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù) ,
(1)若不等式 的解集 .求 的值;
(2)若 的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)
(1)當(dāng) 時,討論 f(x)的單調(diào)性;
(2)若 時, ,求 a 的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案