(2005•朝陽區(qū)一模)有一個正四棱錐,它的底面邊長與側棱長均為a,現(xiàn)用一張正方形包裝紙將其完全包住(不能裁剪紙,但可以折疊),那么包裝紙的最小邊長應為( 。
分析:將四棱錐的四個側面沿底面展開,觀察展開圖的形狀形可得包裝紙的對角線處在如圖所示的P'P位置時,包裝紙面積最小,由此結合正三角形和正方形的性質加以計算,即可獲得問題的解答.
解答:解:由題意,得
將正四棱錐沿底面將側面都展開,得到如右圖所示的平面展開圖
可得當以P'P為正方形的對角線時所需正方形的包裝紙的面積最小,
相應地,此時包裝紙的邊長也最。
設包裝紙正方形的邊長為x,可得P'P2=2x2,
又∵P'P=a+2×
3
a
2
,∴P'P2=(a+
3
a)2=2x2
解之得:x=
2
+
6
2
a

故選:B
點評:本題給出正方形紙片將正四棱錐完全包住,求包裝紙的最小邊長考.著重考查了四棱錐的側面展開圖、正方形和正三角形的性質等知識,屬于中檔題.同時考查了圖形的觀察和分析能力、空間想象能力和空間問題平面化的思想,是一道值得同學們體會反思的好題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2005•朝陽區(qū)一模)圓C:
x=1+cosθ
y=sinθ
為參數(shù))的普通方程為
(x-1)2+y2=1
(x-1)2+y2=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2005•朝陽區(qū)一模)設P(x,y)是圖中四邊形內的點或四邊形邊界上的點(即x、y滿足的約束條件),則z=2x+y的最大值是
2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2005•朝陽區(qū)一模)不等式|3x-2|>4的解集是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2005•朝陽區(qū)一模)在下列給定的區(qū)間中,使函數(shù)y=sin(x+
π
4
)
單調遞增的區(qū)間是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2005•朝陽區(qū)一模)已知直線a、b和平面M,則a∥b的一個必要不充分條件是( 。

查看答案和解析>>

同步練習冊答案