如圖,在四棱錐P—ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB//DC,∠BCD=90°,E為棱PC上異于C的一點(diǎn),DE⊥BE

(1)證明:E為PC的中點(diǎn);
(2)求二面角P—DE—A的大小
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

((13分)
如圖,在四棱錐中,底面是正方形,側(cè)棱=2,,垂足為F。
(1)求證:PA∥平面BDE。
(2)求證:PB⊥平面DEF。
(3)求二面角B—DE—F的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
如圖5,在三棱柱中,側(cè)棱底面,的中點(diǎn),
,.
(1)求證:平面;
(2) 求四棱錐的體積.  圖5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
如圖5,在三棱柱中,側(cè)棱底面,的中點(diǎn),
.
(1) 求證:平面;
(2)若四棱錐的體積為,求二面角的正切值.
圖5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知正方形ABCD的邊長(zhǎng)為1,.將正方形ABCD沿對(duì)角線折起,使,得到三棱錐ABCD,如圖所示.
(1)求證:
(2)求二面角的余弦值.
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
如圖,在四棱錐中,底面為矩形,平面⊥平面,,,的中點(diǎn),求證:
(1)∥平面;
(2)平面平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如右圖所示,在直三棱柱的底面中,
,,,點(diǎn)的中點(diǎn),
的長(zhǎng)是           。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)已知矩形ABCD中,AB=6,BC=,E為AD的中點(diǎn)(圖一)。沿BE將△ABE折起,使二面角A—BE—C為直二面角(圖二),且F為AC的中點(diǎn)。
(1)求證:FD//平面ABE;
(2)求二面角E-AB-C的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在平面幾何中有如下結(jié)論:正三角形ABC的內(nèi)切圓面積為S1,外接圓面積為S2,則,推廣到空間可以得到類似結(jié)論;已知正四面體P—ABC的內(nèi)切球體積為V1,外接球體積為V2,則         

查看答案和解析>>

同步練習(xí)冊(cè)答案