已知函數(shù)f(x)=x-aln x(a∈R).
(1)當(dāng)a=2時(shí),求曲線y=f(x)在點(diǎn)A(1,f(1))處的切線方程;
(2)求函數(shù)f(x)的極值.

(1) x+y-2=0
(2) 當(dāng)a≤0時(shí),函數(shù)f(x)無極值;
當(dāng)a>0時(shí),函數(shù)f(x)在x=a處取得極小值a-aln a,無極大值.

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

求過點(diǎn)(2,0)且與曲線yx3相切的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=x3-3x.
(1)求函數(shù)f(x)的單調(diào)區(qū)間.
(2)求函數(shù)f(x)在區(qū)間[-3,2]上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=ln x-ax(a∈R).
(1)討論函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)g(x)=且g(x)≤1恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù).
(1)求函數(shù)的圖像在點(diǎn)處的切線方程;
(2)求的單調(diào)區(qū)間;
(3)若,為整數(shù),且當(dāng)時(shí),,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知a∈R,函數(shù)f(x)=+ln x-1.
(1)當(dāng)a=1時(shí),求曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程;
(2)求f(x)在區(qū)間(0,e]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

若函數(shù)上為增函數(shù)(為常數(shù)),則稱為區(qū)間上的“一階比增函數(shù)”,的一階比增區(qū)間.
(1) 若上的“一階比增函數(shù)”,求實(shí)數(shù)的取值范圍;
(2) 若  (,為常數(shù)),且有唯一的零點(diǎn),求的“一階比增區(qū)間”;
(3)若上的“一階比增函數(shù)”,求證:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知三次函數(shù),為實(shí)常數(shù)。
(1)若時(shí),求函數(shù)的極大、極小值;
(2)設(shè)函數(shù),其中的導(dǎo)函數(shù),若的導(dǎo)函數(shù)為,,軸有且僅有一個(gè)公共點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若方程有解,求實(shí)數(shù)m的取值范圍;
(3)若存在實(shí)數(shù),使成立,求證:

查看答案和解析>>

同步練習(xí)冊答案