【題目】1+tan1°)(1+tan2°1+tan43°)(1+tan44°=

【答案】

【解析】

試題因為tanA+tanB=tanA+B)(1-tanAtanB),且A+B=45°,即tanA+tanB=1-tanAtanB,

所以(1+tanA)(1+tanB=tanA+tanB+1+tanAtanB=1-tanAtanB+1+tanAtanB=2

即(1+tanA)(1+tanB=2

因為1°+44°=45°,2°+43°=45°,,22°+23°=45°

所以(1+tan1°)(1+tan44°=2,(1+tan2°)(1+tan43°=2,,(1+tan22°)(1+tan23°=2

所以原式=2×2×2×…×2=222

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】2022年北京冬奧會的申辦成功與“3億人上冰雪”口號的提出,將冰雪這個冷項目迅速炒“熱”.北京某綜合大學計劃在一年級開設(shè)冰球課程,為了解學生對冰球運動的興趣,隨機從該校一年級學生中抽取了100人進行調(diào)查,其中女生中對冰球運動有興趣的占,而男生有10人表示對冰球運動沒有興趣額.

(1)完成列聯(lián)表,并回答能否有的把握認為“對冰球是否有興趣與性別有關(guān)”?

有興趣

沒興趣

合計

55

合計

(2)已知在被調(diào)查的女生中有5名數(shù)學系的學生,其中3名對冰球有興趣,現(xiàn)在從這5名學生中隨機抽取3人,求至少有2人對冰球有興趣的概率.

附表:

0.150

0.100

0.050

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)令,判斷g(x)的單調(diào)性;

(2)當x>1時,,求a的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),若在其定義域內(nèi)存在實數(shù)滿足,則稱函數(shù)為“局部奇函數(shù)”,若函數(shù)是定義在上的“局部奇函數(shù)”,則實數(shù)的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的前項和為,正項等比數(shù)列中, ,,則( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)x R , e 為自然對數(shù)的底數(shù)).

判斷函數(shù) f x 的單調(diào)性與奇偶性;

⑵是否存在實數(shù) t ,使不等式對一切的 x R 都成立若存在,求出 t 的值 不存在說明理由

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在第二屆烏鎮(zhèn)互聯(lián)網(wǎng)大會中, 為了提高安保的級別同時又為了方便接待,現(xiàn)將其中的五個參會國的人員安排酒店住宿,這五個參會國要在、、三家酒店選擇一家,且每家酒店至少有一個參會國入住,則這樣的安排方法共有

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓上一點關(guān)于原點的對稱點為,為其右焦點,若,設(shè),且,則該橢圓的離心率的取值范圍是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學舉行了一次數(shù)學基礎(chǔ)知識競賽活動.為了了解本次競賽學生的成績情況,從中抽取了部分學生的分數(shù)(得分取正整數(shù),滿分為100分)作為樣本(樣本容量為)進行統(tǒng)計.按照的分組作出頻率分布直方圖,并作出樣本分數(shù)的莖葉圖(圖中僅列出了得分在的數(shù)據(jù)).

1)求樣本容量和頻率分布直方圖中的,的值;

2)在選取的樣本中,從競賽成績在80分以上(含80分)的學生中隨機抽取2名學生參加市級數(shù)學基礎(chǔ)知識競賽,求所抽取的2名學生中恰有一人得分在內(nèi)的概率.

查看答案和解析>>

同步練習冊答案