如果曲線(xiàn)處的切線(xiàn)互相垂直,則的值為       .
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知半橢圓與半橢圓組成的曲線(xiàn)稱(chēng)為“果圓”,其中,是對(duì)應(yīng)的焦點(diǎn)。A1,A2和B1,B2是“果圓”與x,y軸的交點(diǎn),M是線(xiàn)段A1A2的中點(diǎn).
(1) 若三角形是底邊F1F2長(zhǎng)為6,腰長(zhǎng)為5的等腰三角形,求“果圓”的方程;
(2)若“果圓”方程為:過(guò)F0的直線(xiàn)l交“果圓”于y軸右邊的Q,N點(diǎn),求△OQN的面積S△OQN的取值范圍
(3) 若是“果圓”上任意一點(diǎn),求取得最小值時(shí)點(diǎn)的橫坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題共14分)
已知,動(dòng)點(diǎn)到定點(diǎn)的距離比到定直線(xiàn)的距離小.
(I)求動(dòng)點(diǎn)的軌跡的方程;
(Ⅱ)設(shè)是軌跡上異于原點(diǎn)的兩個(gè)不同點(diǎn),,求面積的最小值;
(Ⅲ)在軌跡上是否存在兩點(diǎn)關(guān)于直線(xiàn)對(duì)稱(chēng)?若存在,求出直線(xiàn) 的方程,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿(mǎn)分18分,其中第1小題6分,第2小題4分,第3小題8分)
現(xiàn)有變換公式可把平面直角坐標(biāo)系上的一點(diǎn)變換到這一平面上的一點(diǎn).
(1)若橢圓的中心為坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,且焦距為,長(zhǎng)軸頂點(diǎn)和短軸頂點(diǎn)間的距離為2. 求該橢圓的標(biāo)準(zhǔn)方程,并求出其兩個(gè)焦點(diǎn)、經(jīng)變換公式變換后得到的點(diǎn)的坐標(biāo);
(2) 若曲線(xiàn)上一點(diǎn)經(jīng)變換公式變換后得到的點(diǎn)與點(diǎn)重合,則稱(chēng)點(diǎn)是曲線(xiàn)在變換下的不動(dòng)點(diǎn). 求(1)中的橢圓在變換下的所有不動(dòng)點(diǎn)的坐標(biāo);
(3) 在(2)的基礎(chǔ)上,試探究:中心為坐標(biāo)原點(diǎn)、對(duì)稱(chēng)軸為坐標(biāo)軸的橢圓和雙曲線(xiàn)在變換下的不動(dòng)點(diǎn)的存在情況和個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知雙曲線(xiàn)的焦點(diǎn)為、,點(diǎn)在雙曲線(xiàn)上且軸,則到直線(xiàn)的距離為                                                  (   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

是雙曲線(xiàn)的右支上一動(dòng)點(diǎn),F是雙曲線(xiàn)的右焦點(diǎn),已知,則的最小值是                                     (   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

過(guò)原點(diǎn)的直線(xiàn)與橢圓交于A(yíng)、B兩點(diǎn),,為橢圓的焦點(diǎn),則四邊形AF1BF2面積的最大值是                 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)為坐標(biāo)原點(diǎn),△和△均為正三角形,點(diǎn)在拋物線(xiàn)上,點(diǎn)在拋物線(xiàn)上,則△和△的面積之比為     .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

橢圓(1-m)x2my2=1的長(zhǎng)軸長(zhǎng)是                      .

查看答案和解析>>

同步練習(xí)冊(cè)答案