設(shè)
分別是橢圓:
的左、右焦點,過
傾斜角為
的直線
與該橢圓相交于P,
兩點,且
.則該橢圓的離心率為( )
直線
斜率為1,設(shè)直線
的方程為
,其中
.
設(shè)
,則
兩點坐標(biāo)滿足方程組
化簡得
,則
,
因為,所以
.
得
,故
,
所以橢圓的離心率
,選B.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,已知橢圓
的左、右焦點分別為
,其上頂點為
已知
是邊長為
的正三角形.
(1)求橢圓
的方程;
(2)過點
任作一動直線
交橢圓
于
兩點,記
.若在線段
上取一點
,使得
,當(dāng)直線
運動時,點
在某一定直線上運動,求出該定直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知直線
與橢圓
相交于
兩點,點
是線段
上的一點,
且點
在直線
上.
(1)求橢圓的離心率;
(2)若橢圓的焦點關(guān)于直線
的對稱點在單位圓
上,求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
:
(
)過點
,且橢圓
的離心率為
.
(1)求橢圓
的方程;
(2)若動點
在直線
上,過
作直線交橢圓
于
兩點,且
為線段
中點,再過
作直線
.求直線
是否恒過定點,如果是則求出該定點的坐標(biāo),不是請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
,過點
且離心率為
.
(1)求橢圓
的方程;
(2)已知
是橢圓
的左右頂點,動點M滿足
,連接AM交橢圓于點P,在x軸上是否存在異于A、B的定點Q,使得直線BP和直線MQ垂直.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
直線y=kx+1,當(dāng)k變化時,此直線被橢圓
截得的最大弦長等于( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,在平面直角坐標(biāo)系xOy中,橢圓
的離心率為
,過橢圓右焦點
作兩條互相垂直的弦
與
.當(dāng)直線
斜率為0時,
.
(1)求橢圓的方程;
(2)求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知
是橢圓
,
上除頂點外的一點,
是橢圓的左焦點,若
則點
到該橢圓左焦點的距離為( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
若點O和點F分別為橢圓
的中心和左焦點,點P為橢圓上的任意一點,則
的最大值為( )
查看答案和解析>>