(2013•東城區(qū)二模)已知命題p:?x∈R,sin(π-x)=sinx;命題q:α,β均是第一象限的角,且α>β,則sinα>sinβ.下列命題是真命題的是(  )
分析:我們先判斷命題p:?x∈R,sin(π-x)=sinx與命題q:α,β均是第一象限的角,且α>β,則sinα>sinβ的真假,進(jìn)而根據(jù)復(fù)合命題的真值表,易判斷四個(gè)結(jié)論的真假,最后得到結(jié)論.
解答:解:由三角函數(shù)的誘導(dǎo)公式知sin(π-x)=sinx,得命題p:?x∈R,sin(π-x)=sinx為真命題,
又∵取α=420°,β=60°,α>β,但sinα>sinβ不成立,q為假命題,
故非p是假命題,非q是真命題;
所以A:p∧¬q是真命題,B:¬p∧¬q是假命題,C:¬p∧q假命題,D:命題p∧q是假命題,
故選A.
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是復(fù)合命題的真假,其中根據(jù)三角函數(shù)的誘導(dǎo)公式及三角函數(shù)的性質(zhì),判斷命題p與命題q的真假是解答的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•東城區(qū)二模)已知函數(shù)f(x)=lnx+
a
x
(a>0).
(1)求f(x)的單調(diào)區(qū)間;
(2)如果P(x0,y0)是曲線(xiàn)y=f(x)上的任意一點(diǎn),若以P(x0,y0)為切點(diǎn)的切線(xiàn)的斜率k≤
1
2
恒成立,求實(shí)數(shù)a的最小值;
(3)討論關(guān)于x的方程f(x)=
x3+2(bx+a)
2x
-
1
2
的實(shí)根情況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•東城區(qū)二模)f(x)=
-
2
x
 ,   x<0
3+log2x ,  x>0
,則f(f(-1))等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•東城區(qū)二模)根據(jù)表格中的數(shù)據(jù),可以斷定函數(shù)f(x)=lnx-
3
x
的零點(diǎn)所在的區(qū)間是( 。
x 1 2 e 3 5
lnx 0 0.69 1 1.10 1.61
3
x
3 1.5 1.10 1 0.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•東城區(qū)二模)對(duì)定義域的任意x,若有f(x)=-f(
1
x
)
的函數(shù),我們稱(chēng)為滿(mǎn)足“翻負(fù)”變換的函數(shù),下列函數(shù):
y=x-
1
x

②y=logax+1,
y=
x,0<x<1
0,x=1
-
1
x
,x>1

其中滿(mǎn)足“翻負(fù)”變換的函數(shù)是
①③
①③
. (寫(xiě)出所有滿(mǎn)足條件的函數(shù)的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•東城區(qū)二模)已知函數(shù)y=f(x)是定義在R上的奇函數(shù),且當(dāng)x∈(-∞,0)時(shí),f(x)+xf′(x)<0(其中f′(x)是f(x)的導(dǎo)函數(shù)),若a=(30.3)•f(30.3),b=(logπ3)•f(logπ3),c=(log3
1
9
)•f(log3
1
9
),則a,b,c的大小關(guān)系是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案