精英家教網 > 高中數學 > 題目詳情
定義一種運算“*”:對于自然數n滿足以下運算性質:(i)1*1=1,(ii)(n+1)*1=n*1+1,則n*1等于( )
A.n
B.n+1
C.n-1
D.n2
【答案】分析:根據定義中的運算法則,對(n+1)*1=n*1+1反復利用,即逐步改變“n”的值,直到得出運算結果.
解答:解:∵1*1=1,(n+1)*1=n*1+1,
∴(n+1)*1=n*1+1=(n-1)*1+1+1=(n-2)*1+3=…=[n-(n-1)]*1+n=1+n,
∴n*1=n.
故選A.
點評:本題題型是給出新的運算利用運算性質進行求值,主要抓住運算的本質,改變式子中字母的值再反復運算性質求出值,考查了觀察能力和分析、解決問題的能力.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2012•泉州模擬)定義一種運算S=a?b,在框圖所表達的算法中揭示了這種運算“?”的含義.那么,按照運算“?”的含義,計算tan15°?tan30°+tan30°?tan15°=
1
1

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•北海一模)定義一種運算(a,b)*(c,d)=ad-bc,若函數f(x)=(1,log3x)*(tan
13π
4
,(
1
5
)x)
,x0是方程f(x)=0的解,且0<x1<x0,則f(x1)的值( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

定義一種運算&,對于n∈N,滿足以下性質:(1)2&2=1,(2)(2n-2)&2=(2n&2)+3,則2008&2的數值為
-3008
-3008

查看答案和解析>>

科目:高中數學 來源: 題型:

定義一種運算法則:
.
ab
cd
.
=ad-bc
,若
.
sin
θ
2
-cos
θ
2
cos
2
sin
2
.
=
3
2
,則cosθ=
3
2
3
2

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•湖南模擬)定義一種運算:(lat-1at-2…a2a1a0)=2t+at-1×2t-1+at-2×2t-2+…+a1×2+a0,其中ak∈{0,1}(k=0,1,2,3,…,t-1),給定x1=(lat-1at-2…a2a1a0),構造無窮數列{xk}:x2=(la0at-1at-2…a2a1),x3=(la1a0at-1at-2…a3a2),x4=(la2a1a0at-1at-2…a4a3),…,
(1)若x1=30,則x4=
29
29
;(用數字作答)
(2)若x1=22m+3+22m+2+22m+1+1(m∈N+),則滿足xk=x1(k≥2,k∈N+)的k的最小值為
2m+4
2m+4
.(用m的式子作答)

查看答案和解析>>

同步練習冊答案