若函數(shù)f(x)=(2x2-a2x-a)•(2x-1-1)的定義域和值域都是[0,+∞),則實數(shù)a=
 
考點:函數(shù)的值域,函數(shù)的定義域及其求法
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由函數(shù)f(x)=(2x2-a2x-a))•(2x-1-1)的定義域和值域為[0,+∞)知當(dāng)x∈[0,1)時,2x2-a2x-a≤0,當(dāng)x∈(1,+∞)時,2x2-a2x-a≥0,從而利用二次函數(shù)的性質(zhì)求解.
解答: 解:∵函數(shù)f(x)=(2x2-a2x-a)•(2x-1-1)的定義域和值域都是[0,+∞),
∴當(dāng)x∈[0,1)時,2x-1-1<0,
則2x2-a2x-a≤0,
當(dāng)x∈[1,+∞)時,2x-1-1≥0,
2x2-a2x-a≥0,
∴1是方程2x2-a2x-a=0的根,
則有2-a2-a=0,
解得a=-2或a=1;
若a=-2,則2x2-4x+2=2(x-1)2≥0恒成立,與要求不符,舍去;
若a=1,則2x2-x-1=(x-1)(2x+1),經(jīng)檢驗成立;
故答案為:1.
點評:本題考查了函數(shù)的性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在△OMN中,A,B分別是OM,ON的中點,若
OP
=x
OA
+y
OB
(x,y∈R),且點P落在四邊形ABNM內(nèi)(含邊界),則
y+1
x+y+2
的取值范圍是( 。
A、[
1
3
,
2
3
]
B、[
1
3
3
4
]
C、[
1
4
,
3
4
]
D、[
1
4
,
2
3
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2x
x+1
,數(shù)列{an}滿足a1=
2
3
,an+1=f(an),bn=
an
1-an
,n∈N*,求數(shù)列{bn}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知事件A與事件B互斥,P(A)=2-a,P(B)=4a-5,且事件A與事件B均為隨機事件,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正棱臺的頂點都在同一球面上,且側(cè)棱與下底面所成的角為
π
3
,上、下底面邊長分別為2,4,則該球的表面積為( 。
A、54πB、32π
C、16πD、8π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=logax(a>0,a≠1),且f(2)-f(3)=1.
(1)若f(3m-2)<f(2m+5),求實數(shù)m的取值范圍;
(2)求使f(x-
2
x
)=log 
2
3
7
2
成立的x值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

an=2n,bn=
1
an2-1
,求{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在初速度為v的勻加速運動中,路程L和時間x的關(guān)系為L=L(x)=vx+
ax2
2

(1)求L關(guān)于x的瞬時變化率,并說明其物理意義;
(2)求運動物體的瞬時速度關(guān)于x的瞬時變化率,說明其物理意義.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|
x2
4
+
3y2
4
=1},B={y|y=x2},那么A∩B等于
 

查看答案和解析>>

同步練習(xí)冊答案