【題目】函數(shù)y= 2x和y= x2的圖象如圖所示,其中有且只有x=x1、x2、x3時(shí),兩函數(shù)值相等,且x1<0<x2<x3 , O為坐標(biāo)原點(diǎn).
(Ⅰ)請(qǐng)指出圖中曲線(xiàn)C1、C2分別對(duì)應(yīng)的函數(shù);
(Ⅱ)請(qǐng)判斷以下兩個(gè)結(jié)論是否正確,并說(shuō)明理由.
①當(dāng)x∈(﹣∞,﹣1)時(shí), 2x x2;
②x2∈(1,2).

【答案】解:(Ⅰ)y= x2是二次函數(shù),故與圖中C1對(duì)應(yīng);

函數(shù)y= 2x是指數(shù)型函數(shù),故與圖中C2對(duì)應(yīng);

(Ⅱ)當(dāng)x=﹣1時(shí), 2x x2,

當(dāng)x=0時(shí), 2x x2,

故x1∈(﹣1,0),

故①當(dāng)x∈(﹣∞,﹣1)時(shí), 2x x2正確;

當(dāng)x=1時(shí), 2x x2,

當(dāng)x=2時(shí), 2x x2,

當(dāng)x=5時(shí), 2x x2,

當(dāng)x=6時(shí), 2x x2,

故x2∈(1,2),x3∈(5,6),

故②正確;


【解析】(Ⅰ)根據(jù)二次函數(shù)和指數(shù)型函數(shù)的圖象和性質(zhì),可得曲線(xiàn)C1、C2分別對(duì)應(yīng)的函數(shù);(Ⅱ)根據(jù)函數(shù)圖象,數(shù)形結(jié)合,可得兩個(gè)結(jié)論的正誤.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解函數(shù)的圖象的相關(guān)知識(shí),掌握函數(shù)的圖像是由直角坐標(biāo)系中的一系列點(diǎn)組成;圖像上每一點(diǎn)坐標(biāo)(x,y)代表了函數(shù)的一對(duì)對(duì)應(yīng)值,他的橫坐標(biāo)x表示自變量的某個(gè)值,縱坐標(biāo)y表示與它對(duì)應(yīng)的函數(shù)值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知A為橢圓 =1(a>b>0)上的一個(gè)動(dòng)點(diǎn),弦AB,AC分別過(guò)左右焦點(diǎn)F1 , F2 , 且當(dāng)線(xiàn)段AF1的中點(diǎn)在y軸上時(shí),cos∠F1AF2= . (Ⅰ)求該橢圓的離心率;
(Ⅱ)設(shè) ,試判斷λ12是否為定值?若是定值,求出該定值,并給出證明;若不是定值,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】過(guò)點(diǎn)(1,2)總可以作兩條直線(xiàn)與圓 x2+y2+kx+2y+k2﹣15=0 相切,則實(shí)數(shù)k的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)y=ax﹣b(a>0且a≠1)的圖象如圖1所示,則函數(shù)y=cosax+b的圖象可能是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正方體ABCD﹣A1B1C1D1 , O是底ABCD對(duì)角線(xiàn)的交點(diǎn).求證:

(1)C1O∥面AB1D1
(2)面OC1D∥面AB1D1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線(xiàn)y=x﹣2與拋物線(xiàn)y2=2x相交于A(yíng)、B兩點(diǎn),O為坐標(biāo)原點(diǎn).
(1)求證:OA⊥OB.
(2)求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若橢圓 與雙曲線(xiàn) 有相同的焦點(diǎn)F1、F2 , P是兩曲線(xiàn)的一個(gè)交點(diǎn),則△F1PF2的面積是(
A.4
B.2
C.1
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】曲線(xiàn)y=1+ 與直線(xiàn)kx﹣y﹣2k+5=0有兩個(gè)交點(diǎn)時(shí),實(shí)數(shù)k的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓E: =1(a>b>0)的離心率為 ,以E的四個(gè)頂點(diǎn)為頂點(diǎn)的四邊形的面積為4 . (Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)A,B分別為橢圓E的左、右頂點(diǎn),P是直線(xiàn)x=4上不同于點(diǎn)(4,0)的任意一點(diǎn),若直線(xiàn)AP,BP分別與橢圓相交于異于A(yíng),B的點(diǎn)M、N,試探究,點(diǎn)B是否在以MN為直徑的圓內(nèi)?證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案