已知圓C方程為:(x-2m-1)2+(y-m-1)2=4m2(m≠0)
(1)求證:當(dāng)m變化時(shí),圓C的圓心在一定直線(xiàn)上;(2)求(1)中一系列圓的公切線(xiàn)的方程.
分析:(1)根據(jù)圓的標(biāo)準(zhǔn)方程,可寫(xiě)出圓心坐標(biāo),進(jìn)而消去參數(shù),即可證明;
(2)分斜率存在與不存在進(jìn)行討論,利用直線(xiàn)與圓相切,圓心到直線(xiàn)距離等于半徑長(zhǎng)求解即可.
解答:證明:(1)由
a=2m+1
b=m+1
消去m得a-2b+1=0.故這些圓的圓心在直線(xiàn)x-2y+1=0上.
解:(2)設(shè)公切線(xiàn)方程為y=kx+b,則由直線(xiàn)與圓相切有
2|m|=
|k(2m+1)-(m+1)+b|
1+k2
,對(duì)一切m≠0成立.
即(-4k-3)m2+2(2k-1)(k+b-1)m+(k+b-1)2=0對(duì)一切m≠0恒成立
所以
-4k-3=0
k+b-1=0
k=-
3
4
b-
7
4
.

當(dāng)k不存在時(shí),圓心到直線(xiàn)為x=1的距離為2|m|,即半徑,故x=1也是一系列圓的公切線(xiàn).
所以公切線(xiàn)方程y=-
3
4
x+
7
4
和x=1.
點(diǎn)評(píng):本題以圓的標(biāo)準(zhǔn)方程為載體,考查圓心的軌跡,考查直線(xiàn)與圓相切,有一定難度.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C方程為:(x-2)2+(y-1)2=9,直線(xiàn)a的方程為3x-4y-12=0,在圓C上到直線(xiàn)a的距離為1的點(diǎn)有( 。﹤(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知圓C方程為:(x-2m-1)2+(y-m-1)2=4m2(m≠0)
(1)求證:當(dāng)m變化時(shí),圓C的圓心在一定直線(xiàn)上;(2)求(1)中一系列圓的公切線(xiàn)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:江蘇月考題 題型:解答題

已知圓C方程為:(x﹣2m﹣1)2+(y﹣m﹣1)2=4m2(m≠0)
(1)求證:當(dāng)m變化時(shí),圓C的圓心在一定直線(xiàn)上;
(2)求(1)中一系列圓的公切線(xiàn)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江蘇省揚(yáng)州中學(xué)高三(上)段考數(shù)學(xué)試卷(解析版) 題型:解答題

已知圓C方程為:(x-2m-1)2+(y-m-1)2=4m2(m≠0)
(1)求證:當(dāng)m變化時(shí),圓C的圓心在一定直線(xiàn)上;(2)求(1)中一系列圓的公切線(xiàn)的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案