(12分)已知圓:和,動(dòng)點(diǎn)到圓的切線長(zhǎng)與||的比等于常數(shù),求動(dòng)點(diǎn)的軌跡方程,并說明表示什么曲線。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分) 已知點(diǎn),直線及圓.
(1)求過點(diǎn)的圓的切線方程;
(2)若直線與圓相切,求的值;
(3)若直線與圓相交于兩點(diǎn),且弦的長(zhǎng)為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓C:.
(1)若圓C的切線在x軸和y軸上的截距相等,且截距不為零,求此切線的方程;
(2)從圓C外一點(diǎn)P向該圓引一條切線,切點(diǎn)為M,O為坐標(biāo)原點(diǎn),且有,
求使得取得最小值的點(diǎn)P的坐標(biāo)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)已知點(diǎn)P到兩個(gè)定點(diǎn)M(-1,0),N(1,0)的距離的比為。
(1)求證點(diǎn)P在一定圓上,并求此圓圓心和半徑;
(2)若點(diǎn)N到直線PM的距離為1,求直線PN的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知⊙C:x2+y2-2x-2y+1=0,直線l與⊙C相切且分別交x軸、y軸正向于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn),且=a,=b(a>2,b>2).
(Ⅰ)求線段AB中點(diǎn)的軌跡方程.
(Ⅱ)求△ABC面積的極小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題12分)已知圓C經(jīng)過點(diǎn)A(1,—1),B(—2,0),C(,1)直線:
(1)求圓C的方程;
(2)求證:,直線與圓C總有兩個(gè)不同的交點(diǎn);
(3)若直線與圓C交于M、N兩點(diǎn),當(dāng)時(shí),求m的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
設(shè)雙曲線的一條漸近線與拋物線y=x2+1只有一個(gè)公共點(diǎn),則雙曲線的離心率為( )
A. | B.5 | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
如圖,已知橢圓,雙曲線(a>0,b>0),若以C1的長(zhǎng)軸為直徑的圓與C2的一條漸近線交于A,B兩點(diǎn),且C1與該漸近線的兩交點(diǎn)將線段AB三等分,則C2的離心率為( )
A.5 | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分8分)
已知直線的方程為,圓的極坐標(biāo)方程為 .
(Ⅰ)將圓的極坐標(biāo)方程化為直角坐標(biāo)方程;
(Ⅱ)判斷直線和圓的位置關(guān)系.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com