精英家教網 > 高中數學 > 題目詳情

【題目】已知兩點A0,﹣1),B0,1),直線PA,PB相交于點P,且它們的斜率之積是,記點P軌跡為C.

1)求曲線C的軌跡方程;

2)直線l與曲線C交于M,N兩點,若|AM||AN|,求直線l的斜率k的取值范圍.

【答案】(1);(2).

【解析】

1)設,由利用斜率公式,得到關系式,整理即可求出結論;

2)斜率顯然成立,當設直線方程為與橢圓方程聯(lián)立,得到關于的一元二次方程,由,得出關于的不等量關系,運用根與系數關系求出坐標關系,進而求出中點坐標,,可得,求出關系,代入的不等量關系式,即可求出結論.

1)設點Px,y),則kPA,kPB,

則有,整理得,

即曲線C的軌跡方程為

2)當直線斜率不存在時,顯然不符,

故設直線方程為,代入,

整理得,

由已知條件可知,

,①.

,記的中點為,

,

所以,,

,得,所以,

將②代入③化簡得,即,

將④代入①得,即,

,經檢驗,當時,也成立,

的取值范圍為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,已知直三棱柱中,,的中點,上一點,且.

(Ⅰ)證明:平面;

(Ⅱ)求三棱錐的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】鳳鳴山中學的高中女生體重 (單位:kg)與身高(單位:cm)具有線性相關關系,根據一組樣本數據),用最小二乘法近似得到回歸直線方程為,則下列結論中不正確的是(

A.具有正線性相關關系

B.回歸直線過樣本的中心點

C.若該中學某高中女生身高增加1cm,則其體重約增加0.85kg

D.若該中學某高中女生身高為160cm,則可斷定其體重必為50.29kg.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的右焦點到直線的距離為,在橢圓.

1)求橢圓的方程;

2)若過作兩條互相垂直的直線,與橢圓的兩個交點,與橢圓的兩個交點,分別是線段的中點試,判斷直線是否過定點?若過定點求出該定點的坐標;若不過定點,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在如圖所示的多面體中, 平面, , , , , 的中點.

(1)求證: 平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,(.

(Ⅰ)若函數有且只有一個零點,求實數的取值范圍;

(Ⅱ)設,若,若函數對恒成立,求實數的取值范圍.是自然對數的底數,

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某學生對其親屬30人的飲食習慣進行了一次調查,并用如圖所示的莖葉圖表示30人的飲食指數(說明:圖中飲食指數低于70的人,飲食以蔬菜為主;飲食指數高于70的人,飲食以肉類為主).

(1)根據以上數據完成下列列聯(lián)表:

主食蔬菜

主食肉類

總計

50歲以下

50歲以上

總計

(2)能否有99%的把握認為其親屬的飲食習慣與年齡有關?并寫出簡要分析.

參考公式和數據:.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在四棱錐中,平面,,,與平面所成的角是,的中點,在線段上,且滿足.

1)求二面角的余弦值;

2)在線段上是否存在點,使得與平面所成角的余弦值是,若存在,求的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線,過其焦點的直線與拋物線相交于、兩點,滿足.

1)求拋物線的方程;

2)已知點的坐標為,記直線、的斜率分別為,,求的最小值.

查看答案和解析>>

同步練習冊答案