已知集合A={x丨x2-3x+2=0},B={x丨x2-(m+1)x+m=0}.
(1)若B?A,求m所有可取值組成的集合;
(2)若B⊆A,求m所有可取值組成的集合.
考點:集合的包含關系判斷及應用
專題:集合
分析:(1)首先,化簡集合A,然后,結合x2-(m+1)x+m=0和條件B?A得到結論;
(2)結合(1)和條件B⊆A得到結果.
解答: 解:(1)∵A={1,2},
由集合B,得
x2-(m+1)x+m=0,
∴(x-1)(x-m)=0,
∵B?A,
∴m=1,
∴m所有可取值組成的集合{1};
(2)∵B⊆A,
∴m=1或m=1,2,
∴m所有可取值組成的集合{1},{1,2}.
點評:本題綜合考查了集合之間的子集和真子集關系,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

將函數(shù)f(x)=
3
sin2x+cos2x(x∈R)的圖象向左平移
π
6
個單位長度后得到函數(shù)y=g(x),則函數(shù)y=g(x)(  )
A、是奇函數(shù)
B、是偶函數(shù)
C、既是奇函數(shù)又是偶函數(shù)
D、既不是奇函數(shù),也不是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在等比數(shù)列{an}中,已知a1=2,且a2,a1+a3,a4成等差數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式an;
(Ⅱ)設數(shù)列{an2-an}的前n項和為Sn,記bn=
2n
Sn
,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求使函數(shù)y=1-
1
2
cos
π
3
x
(x∈R)取得最大值、最小值的自變量x的集合,并分別寫出最大值、最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,設圓x2+y2=12與拋物線x2=4y相交于A,B兩點,F(xiàn)為拋物線的焦點.若過點F作一直線l交圓于點M、N,求△OMN面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

袋中裝有大小和形狀相同的小球若干個黑球和白球,且黑球和白球的個數(shù)比為4:3,從中任取2個球都是白球的概率為
1
7
現(xiàn)不放回從袋中摸取球,每次摸一球,直到取到白球時即終止,每個球在每一次被取出的機會是等可能的,用ξ表示取球終止時所需要的取球次數(shù).
(1)求袋中原有白球、黑球的個數(shù);
(2)求隨機變量ξ的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

證明:橢圓
x2
20
+
y2
5
=1與雙曲線
x2
12
-
y2
3
=1的交點在同一個圓上.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

拋物線x2=2y上的點M到其焦點F的距離|MF|=
5
2
,則點M的坐標是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x>0,y>0,且4x2+y2+2x+y=6,則2x+y最大值是
 

查看答案和解析>>

同步練習冊答案