若非零向量
a
b
滿足|
a
|=|
b
|
(2
a
-
b
)•
b
=0
,則
a
b
的夾角為
 
分析:根據(jù)兩個(gè)向量的數(shù)量積的定義,結(jié)合題中的條件可得cosθ=
1
2
,由此求出θ 的值.
解答:解:設(shè)
a
b
的夾角為θ,由題意可得 (2
a
-
b
)•
b
=2
a
b
-
b
2
=2|
a
|•|
b
|cosθ-|
b
|
2
=0,
再由|
a
|=|
b
|
,可得cosθ=
1
2
,∴θ=60°,
故答案為:60°.
點(diǎn)評(píng):本題考查兩個(gè)向量的數(shù)量積的定義,根據(jù)三角函數(shù)的值求角的大小,求得cosθ=
1
2
,是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

8、若非零向量a,b滿足|a+b|=|b|,則( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題中假命題 是( 。
A、若|
a
b
|=|
a
|•|
b
|
,則
a
b
B、
a
=(-1,1)
b
=(3,4)
方向上的投影為
1
5
C、若△ABC中,a=5,b=8,c=7,則
BC
CA
=20
D、若非零向量
a
、
b
滿足|
a
+
b
|=|
a
-
b
|,則
a
b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列五個(gè)判斷:
①若非零向量
a
、
b
滿足
a
b
,則向量
a
、
b
所在的直線互相平行或重合;
②在△ABC中,
AB
+
BC
+
CA
=
0

③已知向量
a
、
b
為非零向量,若
a
b
=
a
c
,則
b
=
c
;
④向量
a
、
b
滿足|
a
b
|=|
a
|•|
b
|
,則
a
b
;
⑤已知向量
a
、
b
為非零向量,則有(
a
b
)•
c
=
a
•(
b
c
)

其中正確的是
 
.(填入所有正確的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若非零向量
a
,
b
滿足|
a
|=|
b
|,且
a
b
,又知(2
a
+5
b
)⊥(k
a
-2
b
)
,實(shí)數(shù)k的值是
5
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若非零向量
a
、
b
滿足|
a
b
|=|
b
|,則( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案