【題目】手機作為客戶端越來越為人們所青睞,通過手機實現(xiàn)衣食住行消費已經(jīng)成為一種主要的消費方式.在某市,隨機調查了200名顧客購物時使用手機支付的情況,得到如下的2×2列聯(lián)表,已知從使用手機支付的人群中隨機抽取1人,抽到青年的概率為.

(I)根據(jù)已知條件完成2×2列聯(lián)表,并根據(jù)此資料判斷是否有99.5%的把握認為“市場購物用手機支付與年齡有關”?

2×2列聯(lián)表:

青年

中老年

合計

使用手機支付

120

不使用手機支付

48

合計

200

(Ⅱ)現(xiàn)采用分層抽樣的方法從這200名顧客中按照“使用手機支付”和“不使用手機支付”抽取一個容量為10的樣本,再從中隨機抽取3人,求這三人中“使用手機支付”的人數(shù)的分布列及期望.

附:

0.05

0.025

0.010

0.005

3.841

5.024

6.635

7.879

【答案】(I)有99.5%的把握認為“市場購物用手機支付與年齡有關”

(Ⅱ)所求隨機變量的概率分布為

0

1

2

3

期望

【解析】

(Ⅰ)根據(jù)抽樣比例求得對應數(shù)據(jù),填寫2×2列聯(lián)表,根據(jù)表中數(shù)據(jù)計算K2,對照臨界值得出結論;

(Ⅱ)根據(jù)分層抽樣方法計算對應人數(shù),得出隨機變量X的可能取值,計算對應的概率值,寫出X的分布列,計算數(shù)學期望值.

(Ⅰ)從使用手機支付的人群中隨意抽取1人,抽到青年的概率為,

∴使用手機支付的人群中青年的人數(shù)為120=84,

則使用手機支付的人群中的中老年的人數(shù)為120﹣84=36,

由此填寫2×2列聯(lián)表如下;

青年

中老年

合計

使用手機支付

84

36

120

不使用手機支付

32

48

80

合計

116

84

200

根據(jù)表中數(shù)據(jù),計算K217.734>7.879,

PK2≥7.879)=0.005,

由此判斷有99.5%的把握認為“市場購物用手機支付與年齡有關”;

(Ⅱ)根據(jù)分層抽樣方法,從這200名顧客中抽取10人,

抽到“使用手機支付”的人數(shù)為106,

“不使用手機支付”的人數(shù)為4,

設隨機抽取的3人中“使用手機支付”的人數(shù)為隨機變量X,

X的可能取值分別為0,1,2,3;

計算PX=0),

PX=1),

PX=2)

PX=3),

X的分布列為:

X

0

1

2

3

P

X的數(shù)學期望為EX=0123

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知二次函數(shù).

1)若,求在區(qū)間上的值域;

2)求在區(qū)間上的最值;

3)若的在區(qū)間上無最值,求m的取值范圍;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,已知過點的圓和直線相切,且圓心在直線.

1)求圓的標準方程;

2)點,圓上是否存在點,使若存在,求出點的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 經(jīng)過點,一個焦點是

(1)求橢圓的方程;

(2)若傾斜角為的直線與橢圓交于兩點,且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,底面為矩形,⊥平面,的中點.

(Ⅰ)證明:∥平面;

(Ⅱ)設二面角為60°,=1,=,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】假設平面點集具有性質:(1)任意三點不共線;(2)任意兩點距離各不相等.對于中兩點、,若存在點使得,則稱的一條“中邊”;對于中三點、,若、都是的中邊,則稱的“中邊三角形”.求最小的,使得任意具有性質(1)和(2)的元平面點集中必存在中邊三角形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】越接近高考學生焦慮程度越強,四個高三學生中大約有一個有焦慮癥,經(jīng)有關機構調查,得出距離高考周數(shù)與焦慮程度對應的正常值變化情況如下表:

周數(shù)x

6

5

4

3

2

1

正常值y

55

63

72

80

90

99

(1)作出散點圖:

(2)根據(jù)上表數(shù)據(jù)用最小二乘法求出y關于x的線性回歸方程 (精確到0.01);

(3)根據(jù)經(jīng)驗,觀測值為正常值的0.851.06為正常,若1.061.12為輕度焦慮,1.121.20為中度焦慮,1.20及其以上為重度焦慮,若為中度焦慮及其以上,則要進行心理疏導,若一個學生在距高考第二周時觀測值為100,則該學生是否需要進行心理疏導?

,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本題滿分15分)

在等差數(shù)列{an},a1=1,公差d≠0,a1,a2,a5是等比數(shù)列{bn}的前三項

(1)求數(shù)列{an}{bn}的通項公式;

(2)設cn=an·bn,求數(shù)列{cn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】全國校足辦決定于20198月組織開展全國青少年校園足球夏令營總營活動.某校購買兩種不同品牌的足球,其中種品牌足球個,種品牌足球個,共需元,已知種品牌足球的售價比種品牌足球的售價高/.

1)求兩種品牌足球的售價;

2)該校為舉辦足球聯(lián)誼賽,決定第二次購買兩種不同品牌的足球.恰逄商場對兩種品牌足球的售價進行調整,種品牌足球售價比第一次購買時提高了/,種品牌足球按第一次購買時售價的(即原價的)出售.如果第二次購買種品牌足球的個數(shù)比第一次少個,第二次購買種品牌足球的個數(shù)比第一次多個,則第二次購買兩種品牌足球的總費用比第一次少.的值.

查看答案和解析>>

同步練習冊答案