【題目】某地區(qū)隨著經(jīng)濟的發(fā)展,居民收入逐年增長,銀行儲蓄連年增長,下表是該地區(qū)某銀行連續(xù)五年的儲蓄存款(年底結算):

年份

儲蓄存款(千億元)

為方便研究,工作人員對上表的數(shù)據(jù)做了如下處理:,得到下表:

1)用最小二乘法求出關于的線性回歸方程

2)通過(1)中的方程,求出關于的線性回歸方程,并用所求回歸方程預測年底,該地儲蓄存款額可達多少?

(附:參考公式,其中,

【答案】1;(2,預測年底,該地儲蓄存款額約為千億元.

【解析】

1)由已知表格中的數(shù)據(jù)結合最小二乘法公式求得的值,進而可得出關于的線性回歸方程;

2)將,代入到(1)中求得的線性回歸方程中,得,取求得值即可.

1,,

,.

,即所求回歸方程為;

2)將代入到,得,

所以,當時,.

所以,到年底,該地儲蓄存款額可達千億元.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】下列命題中錯誤的是

A. 若命題p為真命題,命題q為假命題,則命題“pV(q)”為真命題

B. 命題“若a+b≠7,則a≠2或b≠5”為真命題

C. 命題“若x2-x=0,則x=0或x=1”的否命題為“若x2-x=0,則x≠0且x≠1”

D. 命題p: x>0,sinx>2x-1,則p為x>0,sinx≤2x-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】20168月巴西里約熱內(nèi)盧舉辦的第31屆奧運會上,乒乓球比賽團體決賽實行五場三勝制,且任何一方獲勝三場比賽即結束.甲、乙兩個代表隊最終進入決賽,根據(jù)雙方排定的出場順序及以往戰(zhàn)績統(tǒng)計分析,甲隊依次派出的五位選手分別戰(zhàn)勝對手的概率如下表:

出場順序

1

2

3

4

5

獲勝概率

若甲隊橫掃對手獲勝(即30獲勝)的概率是,比賽至少打滿4場的概率為.

1)求,的值;

2)求甲隊獲勝場數(shù)的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知fx)=axexlnxx

(Ⅰ)若fx)有兩個不同的零點,求實數(shù)a的取值范圍;

(Ⅱ)已知a1,若對任意的x0,均有fx)>cx22x+1成立,求實數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下圖是我國2008年至2014年生活垃圾無害化處理量(單位:億噸)的折線圖.

Ⅰ)由折線圖看出,可用線性回歸模型擬合yt的關系,請用相關系數(shù)加以說明;

Ⅱ)建立y關于t的回歸方程(系數(shù)精確到0.01),預測2016年我國生活垃圾無害化處理量.

附注:

參考數(shù)據(jù):,,

≈2.646.

參考公式:相關系數(shù)

回歸方程中斜率和截距的最小二乘估計公式分別為:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=(ax-2)exx=1處取得極值.

(1)a的值;

(2)求函數(shù)在區(qū)間[m,m+1]上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設定義在R上的函數(shù),當時,取極大值,且函數(shù)的圖象關于原點對稱.

1)求的表達式;

2)試在函數(shù)的圖象上求兩點,使以這兩點為切點的切線互相垂直,且切點的橫坐標都在上;

3)設,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),,則的零點個數(shù)為( )

A. 6B. 7C. 8D. 9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,函數(shù),.

(1)求的單調(diào)區(qū)間

(2)討論零點的個數(shù)

查看答案和解析>>

同步練習冊答案