【題目】已知數(shù)列的前項(xiàng)和為,且,
(1)求證:數(shù)列為等比數(shù)列,并求出數(shù)列的通項(xiàng)公式;
(2)是否存在實(shí)數(shù),對(duì)任意,不等式恒成立?若存在,求出的取值范圍,若不存在請(qǐng)說(shuō)明理由.
【答案】(1)證明略; (2)
【解析】
(1)直接利用遞推關(guān)系式求出數(shù)列的通項(xiàng)公式,進(jìn)一步證明數(shù)列為等比數(shù)列;
(2)利用(1)的結(jié)論,進(jìn)一步利用分組法和恒成立問(wèn)題求出實(shí)數(shù)λ的取值范圍.
證明:(1)已知數(shù)列{an}的前n項(xiàng)和為Sn,且,①
當(dāng)n=1時(shí),,
則:當(dāng)n≥2時(shí),,②
①﹣②得:an=2an﹣2an﹣1﹣+,
整理得:,
所以:,
故:(常數(shù)),
故:數(shù)列{an}是以為首項(xiàng),2為公比的等比數(shù)列.
故:,
所以:.
由于:,
所以:(常數(shù)).
故:數(shù)列{bn}為等比數(shù)列.
(2)由(1)得:,
所以:+(),
=,
=,
假設(shè)存在實(shí)數(shù)λ,對(duì)任意m,n∈N*,不等式恒成立,
即:,
由于:,
故當(dāng)m=1時(shí),,
所以:,
當(dāng)n=1時(shí),.
故存在實(shí)數(shù)λ,且.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,海島O上有一座海拔300m的山,山頂上設(shè)有一個(gè)觀察站A.上午11時(shí)測(cè)得一輪船在島北偏東的B處,俯角為;11時(shí)20分又測(cè)得該船在島的北偏西的C處,俯角為.
(1)該船的速度為每小時(shí)多少千米?
(2)若此船以不變的航速繼續(xù)前進(jìn),則它何時(shí)到達(dá)島的正西方向?此時(shí)船離開(kāi)島多少千米?(精確到lm)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:的短軸長(zhǎng)為2,且橢圓過(guò)點(diǎn).
(1)求橢圓的方程;
(2)設(shè)直線過(guò)定點(diǎn),且斜率為,若橢圓上存在,兩點(diǎn)關(guān)于直線對(duì)稱,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】西北某省會(huì)城市計(jì)劃新修一座城市運(yùn)動(dòng)公園,設(shè)計(jì)平面如圖所示:其為五邊形,其中三角形區(qū)域為球類活動(dòng)場(chǎng)所;四邊形為文藝活動(dòng)場(chǎng)所,,為運(yùn)動(dòng)小道(不考慮寬度),,千米.
(1)求小道的長(zhǎng)度;
(2)求球類活動(dòng)場(chǎng)所的面積最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),若存在互不相等的個(gè)實(shí)數(shù),使得,則的取值范圍為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)A、B、C、D為空間四個(gè)不共面的點(diǎn),以的概率在每對(duì)點(diǎn)之間連一條邊,任意兩對(duì)點(diǎn)之間是否連邊是相互獨(dú)立的,則點(diǎn)A與B可用(一條邊或者若干條邊組成的)空間折線連接的概率為_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)為偶函數(shù).
(1)求實(shí)數(shù)的值;
(2)若不等式恒成立,求實(shí)數(shù)a的取值范圍;
(3)若函數(shù),,是否存在實(shí)數(shù)m,使得的最小值為2,若存在,請(qǐng)求出m的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)判斷函數(shù)的奇偶性,并說(shuō)明理由;
(2)若在上的最小值為3,求實(shí)數(shù)的值以及相應(yīng)的的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某超市為了解顧客的購(gòu)物量及結(jié)算時(shí)間等信息,安排一名員工隨機(jī)收集了在該超市購(gòu)物的100名顧客的相關(guān)數(shù)據(jù),如下表所示:
已知這100位顧客中一次性購(gòu)物超過(guò)8件的顧客占55%.
一次性購(gòu)物 | 1至4件 | 5至8件 | 9至12件 | 13至16件 | 17件及以上 |
顧客數(shù)(人) | 30 | 25 | 10 | ||
結(jié)算時(shí)間(分/人) | 1 | 1.5 | 2 | 2.5 | 3 |
(1)求,的值;
(2)求一位顧客一次購(gòu)物的結(jié)算時(shí)間超過(guò)2分鐘的概率(頻率代替概率).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com